Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2, y =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 −x Câu Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R A m ≥ e−2 B m > 2e C m > e2 D m > Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 60a3 C 30a3 D 20a3 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < π y > − 4π2 C Nếu < x < y < −3 D Nếux = y = −3 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ad > B bc > C ac < D ab < Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = [ 0; +∞) D S = (−∞; ln3) Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(−3; 1; 1) C C(5; 9; 5) D C(3; 7; 4) √ Câu 10 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = √ a Tính góc SC mặt phẳng (ABC) A 300 B 600 C 1200 D 450 Câu 11 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 12 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B − C D 6 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(1; 1; 2) Trang 1/5 Mã đề 001 Câu 14 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 15 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π B V = C V = D V = A V = 5 Câu 16 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 A B C D 2m 2m 2m m Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B N(2; 3) C M(2; −3) D Q(−2; −3) Câu 19 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −3 D −7 − 2i (1 − i)(2 + i) + Câu 20 Phần thực số phức z = 2−i + 3i 11 29 11 29 A B C − D − 13 13 13 13 √ Câu 21 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B m ≥ m ≤ −1 C m ≥ m ≤ D −1 ≤ m ≤ Câu 22 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −9 C −10 D 10 Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = 2k D A = Câu 24 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B -1 C D 4(−3 + i) (3 − i)2 Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = C |w| = 48 D |w| = 85 Câu 26 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa A πa3 B 3πa3 C D πa3 3x − Câu 27 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = (0; 1] ∪ [2; +∞) B S = (−∞; 1] ∪ [2; +∞) C S = (1; 2) D S = [1; 2] Trang 2/5 Mã đề 001 Câu 28 A − √3 a2 b ) Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c B C D Câu 29 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ √ √h √ 2π − π− 3 2π − 3 B C D A 12 12 1 Câu 30 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > m < B m > C m < D m > Câu 31 Cho R4 f (x)dx = 10 −1 A −2 R4 B f (x)dx = Tính R1 f (x)dx −1 C 18 D Câu 32 Người ta cần cắt tôn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 4a2 b 2a2 b 2a2 b A √ B √ C √ D √ 3π 3π 2π 2π Câu 33 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 B C D A 5 2z − i Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≥ B |A| < C |A| > D |A| ≤ Câu 35 Cho số phức z (không phải số thực, số ảo) thỏa mãn + z + z2 số thực − z + z2 Khi mệnh đề sau đúng? 5 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Câu 36 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = 2016 D P = Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = + C P = 26 D P = 34 + Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = |z|2 − D P = (|z| − 2)2 Trang 3/5 Mã đề 001 Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 42 Cho số phức z , thỏa mãn A |z| = z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = r Câu 43 Tìm tập xác định D hàm số y = D |z| = 3x + x−1 B D = (−1; 4) D D = (−∞; −1] ∪ (1; +∞) log2 A D = (1; +∞) C D = (−∞; 0) Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080253 đồng C 36080251 đồng D 36080254 đồng √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ (x − 1) ln (x − 1)log4 e 2(x − 1) ln x2 − ln Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 3π ln + C cos x π F(− ) = π Khi giá trị sin x + cos x 6π ln + 5 D 6π Câu 47 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 15 πa2 17 πa2 17 A B C D Câu 48 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B C ln D − ln Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C −2 D Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a a 15 3a 30 A B C D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001