Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = − sin3x 3 +C B ∫ sin2 x cos x = cos[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R R sin3 x + C B sin2 x cos x = cos2 x sin x + C A sin2 x cos x = − 3 R R sin x C sin2 x cos x = + C D sin2 x cos x = −cos2 x sin x + C Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = −1+ ln 5 ln ln x x +1− D y = − C y = ln ln 5 ln ln Câu Hàm số sau đồng biến R? A y = x√2 B y = tan x √ 2 D y = x4 + 3x2 + C y = x + x + − x − x + Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = tan x 3x + C y = D y = x3 − 2x2 + 3x + x−1 Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3a b A VS ABC = B VS ABC = 12 12 √ √ 3ab2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? B R = 21 C R = D R = A R = 29 R √3 7x + 1dx Câu Tính I = 20 60 45 21 A I = B I = C I = D I = 28 28 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −15 C m = −2 D m = Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = 3 2x + 2017 Câu 10 Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng B Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 Trang 1/5 Mã đề 001 C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng √ 6, S B = Câu 11 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a √ a Tính góc SC mặt phẳng (ABC) A 1200 B 600 C 450 D 300 √ d = 1200 Gọi Câu 12 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a a 15 A B C a 15 D Câu 13 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln − B ln + C − ln D ln − 2 2 R Câu R14 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu 15 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 B m < C Không tồn m D < m < A m < 3 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(1; 2; 0) C A(1; 0; 3) D A(0; 2; 3) Câu 17 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B 21008 C −21008 + D −21008 z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B C 13 D 11 Câu 19 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 20 Số phức z = A 21008 (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D Câu 21 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z2 + 2z + C z + z + Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số phức B Mô-đun số phức z số thực dương D Mô-đun số phức z số thực Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D z · z + z + z + D Trang 2/5 Mã đề 001 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 + 2i C −3 − 2i D −3 − 10i Câu 25 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = D A = 2k x + 2x Câu 26 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A −2 B C D 15 Câu 27 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 5 20 5πa3 a B V = πa C V = πa D V = A V = 6 Câu 28 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 33,2 C 11 D 8,9 Câu 29 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π 3π π π A V = B V = C V = D V = Câu 30 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b C √ A √ B √ D √ 3π 3π 2π 2π y−6 z−1 x−3 = = Câu 31 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −3 x y−1 z−1 x−1 y z−1 C = = D = = −1 −3 −1 −3 (2 ln x + 3)3 : x ln x + (2 ln x + 3)4 (2 ln x + 3)2 (2 ln x + 3)4 A + C B + C C + C D + C 2 Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 B (x + 1)2 + (y − 1)2 + (z − 2)2 = √ C (x − 1)2 + (y + 1)2 + (z + 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = √ √ √ 42 √ Câu 34 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z C < |z| < D < |z| < A < |z| < B < |z| < 2 2 Câu 35 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 32 Họ nguyên hàm hàm số f (x) = Trang 3/5 Mã đề 001 Câu 36 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 37 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −21008 C 21008 D −22016 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | √ 2 Mệnh đề Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ 2 2 2 D |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 2 Câu 40 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = 2016 C P = −2016 D P = Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ A P = B P = 26 C P = + D P = 34 + Câu 43 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRl + 2πR2 C S = πRh + πR2 D S = 2πRl + 2πR2 Câu 44 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 2 3 r 3x + Câu 45 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−1; 4) C D = (−∞; −1] ∪ (1; +∞) D D = (1; +∞) x2 + mx + đạt cực tiểu điểm x = Câu 46 Tìm tất giá trị tham số m để hàm số y = x+1 A m = B Khơng có m C m = −1 D m = 0 d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) A a B a C a D 2a Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo √ góc đường thẳng S B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 cos x π Câu 49 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π A ln + B ln + C D ln + 5 5 Trang 4/5 Mã đề 001 Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ √ √ cách hai đường thẳng 3a 30 3a a 15 3a B C D A 10 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001