Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y = √ x, y = x, x = 2 quay qua[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình phẳng (D) giới hạn đường y = thể tích V khối trịn xoay tạo thành? A V = B V = π √ C V = x, y = x, x = quay quanh trục hồnh Tìm 10π Câu Số nghiệm phương trình x + 5.3 x − = A B C Câu Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = x3 − 6x2 + 12x − D V = π D B y = cos x D y = x2 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m ≥ e−2 C m > D m > 2e x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = B y = − C y = D y = −1 R R R R 2 Câu √Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh nó√bằng B 2πRl C πRl D π l2 − R2 A 2π l2 − R2 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; −2) C I(0; 1; 2) D I(1; 1; 2) √ Câu 10 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B (0; 1) C (1; +∞) D ( ; +∞) 4 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(3; 7; 4) B C(5; 9; 5) C C(−3; 1; 1) D C(1; 5; 3) Câu 12 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 5 R5 dx = ln T Giá trị T là: Câu 13 Biết 2x − √ A T = B T = 81 C T = D T = Câu 14 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Trang 1/5 Mã đề 001 Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x B C D A − 6 √ d = 1200 Gọi Câu 16 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng cách từ điểm I đến mặt √ phẳng (A1 BK) √ a 15 a a A B C a 15 D Câu 17 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi mơ-đun số phức√w = 6z − 25i B C 13 D 29 A Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B 11 + 2i C −3 − 10i D −3 − 2i Câu 19 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z · z = a2 − b2 C z − z = 2a D |z2 | = |z|2 A z + z = 2bi Câu 20 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) B z = + i C z = −3 − i A z = −3 + i D z = − i Câu 22 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 23 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm B Mô-đun số phức z số thực D Mô-đun số phức z số phức 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = 85 B |w| = 48 C |w| = D |w| = √ Câu 25 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ D m ≥ m ≤ −1 √ x− x+2 Câu 26 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D m 3 Câu 27 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 B S = (−2; − ) ∪ ( ; 7) A S = (−2; − ) ∪ ( ; 6) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−5; − ) ∪ ( ; 6) 4 Câu 28 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 46.538667 đồng C 43.091.358 đồng D 45.188.656 đồng √3 a2 b Câu 29 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B C D − 3 Trang 2/5 Mã đề 001 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D √ Câu 31 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a 10 a a A a B C D Câu 32 Tập xác định hàm số y = logπ (3 x − 3) là: A [1; +∞) B (3; +∞) C Đáp án khác D (1; +∞) Câu 33 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 48m B 50m C 47m D 49m Câu 34 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B −22016 C 21008 D 22016 Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ bao nhiêu? √ √ √ + z3 | + 3|z3 + z1 | 10 B Pmax = C Pmax = D Pmax = A Pmax = Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ A P = + B P = 26 C P = D P = 34 + Câu 38 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i D |w|min = A |w|min = B |w|min = C |w|min = 2 Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ B C D 2 Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ B 15 C D 10 A Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm Q Trang 3/5 Mã đề 001 Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a a 15 3a 30 3a B C D A 2 10 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = + 2t x = −1 + 2t x = − 2t y = −2 − 3t y = −2 + 3t y = + 3t y = −2 + 3t A B C D z = − 5t z = − 5t z = −4 − 5t z = + 5t Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 27 B 29 √ Câu 46 Cho bất phương trình C 2(x−1)+1 23 D 25 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ (4; +∞) D Bất phương trình với x ∈ [ 1; 3] Câu 47 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2abc C P = 2a+b+c D P = 2a+2b+3c Câu 48 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 49 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−3; 0) D (−1; 1) Câu 50 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001