Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) x2 + y2 + z2 − 4z −[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = C R = 29 D R = Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3ab2 B VS ABC = A VS ABC = 12 √ √ 12 3a b a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu Bất đẳng thức sau đúng? −e π A 3√ > 2−e B 3√ < 2π √ √ e π π e C ( − 1) < ( − 1) D ( + 1) > ( + 1) x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = B y = − C y = D y = −1 R R R R 2 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x +1− B y = + A y = ln ln 5 ln x x C y = − D y = −1+ ln ln 5 ln ln Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường parabol C Đường hypebol D Đường elip Câu Cho số thực dươngm Tính I = m+2 A I = ln( ) m+1 Rm x2 dx theo m? + 3x + 2m + B I = ln( ) m+2 C I = ln( m+2 ) 2m + D I = ln( m+1 ) m+2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 1; 0) C (0; −5; 0) D (0; 5; 0) Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; −1; 2) C I(0; 1; −2) D I(1; 1; 2) Câu 10 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D √ sin 2x R bằng? Câu 11 Giá trị lớn hàm số y = ( π) √ A π B π C D Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(1; 0; 3) C A(1; 2; 0) D A(0; 0; 3) Trang 1/5 Mã đề 001 √ Câu 13 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 C (0; ) D (0; 1) A (1; +∞) B ( ; +∞) 4 Câu 14 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 15 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B − ln − C − ln D ln − 2 2 Câu 16 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 17 Cho số phức z thỏa mãn √ = 6z − 25i √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w A 13 B 29 C D Câu 18 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B 21008 C −22016 D −21008 + Câu 19 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = + 7i C w = −7 − 7i D w = − 3i Câu 22 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + D z + z + √ Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B m ≥ m ≤ −1 C −1 ≤ m ≤ D m ≥ m ≤ z2 Câu 21 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 13 C 11 D C z2 + 2z + Câu 23 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 Câu 24 Những số sau vừa số thực vừa số ảo? A Chỉ có số B C C.Truehỉ có số D Khơng có số Câu 25 Cho hai √ số phức z1 = + i z2√= − 3i Tính mô-đun số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 26 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 12 24 Câu 27 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 11 B 33,2 C 2,075 D 8,9 Câu 28 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác √ ABC quanh trục AB √ πa A B πa3 C 3πa3 D πa3 3 Trang 2/5 Mã đề 001 Câu 29 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = −x4 − 2x2 − C y = x4 − 2x2 − D y = 2x4 + 4x2 + x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −3 −1 x−1 y z−1 x y−1 z−1 C = = D = = −1 −3 −3 √3 a2 b Câu 31 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B − C D 3 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 32 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 A 3a B C 3a D 6a Câu 33 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường B (x − 1) + (y + 1)2 + (z + 2)2 = A (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 D (x + 1)2 + (y − 1)2 + (z − 2)2 = √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| < B < |z| < C |z| > D ≤ |z| ≤ 2 2 Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ A P = B P = 26 C P = + D P = 34 + Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 37 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 2 + z + z2 số thực − z + z2 C < |z| < D < |z| < 2 √ Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Trang 3/5 Mã đề 001 Biết điểm biểu diễn số phức ω = số phức ω A điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm Q C điểm N D điểm P √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 42 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox D m < −2 A m > m < −1 B m > m < − C m > Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 45 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 6a3 B 3a3 C 4a3 D 9a3 x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = Câu 46 Tìm tất giá trị tham số m để hàm số y = A Khơng có m B m = −1 A D = (−1; 4) 3x + x−1 B D = (−∞; −1] ∪ (1; +∞) C D = (1; +∞) D D = (−∞; 0) r Câu 47 Tìm tập xác định D hàm số y = log2 √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − x x A y′ = B y′ = C y′ = √ (x − 1) ln 2(x − 1) ln x2 − ln D y′ = (x2 x − 1)log4 e 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B m = C m = D Không tồn m Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 3mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001