Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 360 C 300 D 600 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H2) C (H3) D (H4) Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > e2 C m > 2e D m > Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu √Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh A 2π l2 − R2 B 2πRl C π l2 − R2 D πRl Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu Hàm số sau khơng có cực trị? A y = cos x C y = x4 + 3x2 + B y = x3 − 6x2 + 12x − D y = x2 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C 2πR3 D πR3 R Câu Tính nguyên hàm cos 3xdx 1 B sin 3x + C C sin 3x + C D −3 sin 3x + C A − sin 3x + C 3 √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng cách từ điểm I đến mặt √ phẳng (A1 BK) √ a 15 a a A B C a 15 D 3 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu 12 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = −x4 + C y = x4 + D y = x4 + 2x2 + Câu 13 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 14 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B −1 C π D Câu 15 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 3 Trang 1/5 Mã đề 001 R Câu 16 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −21008 C 21008 D −22016 Câu 19 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 34 B |z| = 34 C |z| = A |z| = 3 D |z| = 34 Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 21 Với số phức z, ta có |z + 1|2 B z2 + 2z + A z · z + z + z + D z + z + C |z|2 + 2|z| + 1 25 = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 B −31 C 17 D 31 Câu 22 Cho số phức z thỏa A −17 Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C D −3 (1 + i)(2 + i) (1 − i)(2 − i) Câu 24 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z số ảo B |z| = C z = z D z = z Câu 25 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực B Mô-đun số phức z số phức D Mô-đun số phức z số thực dương √ Câu 26 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 2a3 a3 A B C D a3 3 Câu 27 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung diện tích mặt đáy nhỏ nhất, S √ quanh 2 A 75dm B 50 5dm C 106, 25dm2 D 125dm2 √3 a2 b Câu 28 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B − C D 3 Trang 2/5 Mã đề 001 x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: y−1 z−1 x−1 y z−1 x = = B = = A −1 −1 −3 x y−1 z−1 x y−1 z−1 C = = D = = −1 −3 −3 1 Câu 30 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x 4k(k + 1) k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = D M = loga x 2loga x loga x 3loga x Câu 29 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 31 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 6π(dm3 ) B 12π(dm3 ) C 54π(dm3 ) D 24π(dm3 ) Câu 32 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 13 3a 10 a B C D A 26 13 20 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 3; 5) B (1; −2; 7) C (4; −6; 8) D (−2; 2; 6) Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ B P = C P = 34 + D P = 26 A P = + Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = −2016 C P = D P = √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 C ≤ |z| ≤ D |z| < A |z| > B < |z| < 2 2 Câu 37 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 21008 C 22016 D −22016 Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp sau đây? ! ! ! 1 9 B ; C ; +∞ D ; A 0; 4 4 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − √ Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Trang 3/5 Mã đề 001 + z + z2 Câu 41 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 42 Cho số phức z , thỏa mãn A |z| = B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = 3x Câu 46 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B Không tồn m C m = D m = Câu 47 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 9a3 B 3a3 C 6a3 D 4a3 Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Câu 50 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 3a3 C 4a3 D 6a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001