Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu 1.√Hình nón có bán kính đáy R, đường sinh l diện√tích xung quanh B πRl C 2π l2 − R2 D 2πRl A π l2 − R2 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = tan x B y = sin x 3x + C y = D y = x3 − 2x2 + 3x + x−1 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = − 4t C x = + 2ty = + tz = D x = + 2ty = + tz = Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B aloga x = x C loga (x − 2)2 = 2loga (x − 2) D loga2 x = loga x Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 4πR3 C 2πR3 D 6πR3 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C log x > log y D ln x > ln y a a Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + R1 √3 Câu Tính I = 7x + 1dx 60 A I = 28 Câu Biết B I = R5 A T = 21 dx = ln T Giá trị T là: 2x − √ B T = C I = 20 C T = D I = 45 28 D T = 81 Câu 10 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B m = C −2 ≤ m ≤ D < m < √ Câu 11 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = √ a Tính góc SC mặt phẳng (ABC) A 300 B 450 C 600 D 1200 Câu 12 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = D f (−1) = −1 √ d = 1200 Gọi Câu 13 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a a 15 A B a 15 C D 3 Trang 1/5 Mã đề 001 Câu 14 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu R15 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R D f (2x − 1)dx = 2F(2x − 1) + C C f (2x − 1)dx = F(2x − 1) + C a3 Câu 16 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 1350 B 300 C 450 D 600 R Câu 17 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i = √ 34 A |z| = B |z| = 34 C |z| = 34 Câu 18 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + C z + z + √ D |z| = 34 D z2 + 2z + Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C −9 D Câu 20 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ C |z1 + z2 | = D |z1 + z2 | = 13 A |z1 + z2 | = B |z1 + z2 | = Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 + i C z = −3 − i A z = + i D z = − i Câu 22 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = D P = 2i !2016 !2018 1+i 1−i Câu 23 Số phức z = + 1−i 1+i A B + i C D −2 Câu 24 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 25 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực B Mô-đun số phức z số thực dương D Mô-đun số phức z số phức 1 + + + ta được: loga x loga2 x logak x k(k + 1) 4k(k + 1) k(k + 1) A M = B M = C M = 3loga x loga x loga x √ x− x+2 Câu 27 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C Câu 26 Rút gọn biểu thức M = D M = k(k + 1) 2loga x D Câu 28 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 − x4 + 2x B x3 + − 4x + C 2x3 − 4x4 D x3 + − 4x 4 Trang 2/5 Mã đề 001 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (1; −2; 7) C (−2; 2; 6) D (−2; 3; 5) Câu 30 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 C 3a D 6a A 3a B m Câu 31 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−3; −1) ∪ (1; 2) B S = (−5; − ) ∪ ( ; 6) 4 19 19 C S = (−2; − ) ∪ ( ; 6) D S = (−2; − ) ∪ ( ; 7) 4 4 Câu 32 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C Câu 33 Tìm tất giá trị tham số m để đồ thị hàm số y = hai điểm cực trị nằm phía bên phải trục tung? A m > B m < D 1 x − (m − 2)x2 + (m − 2)x + m2 có 3 C m > m < D m > Câu 34 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B Phần thực z số âm C z số ảo D z số thực không dương √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 C |z| < D ≤ |z| ≤ A |z| > B < |z| < 2 2 Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ A P = 26 B P = C P = 34 + D P = + Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C √ D 2 Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 1 9 B 0; C ; D ; +∞ A ; 4 4 Trang 3/5 Mã đề 001 √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 41 Cho số phức z thỏa mãn − 5i |z| = z B < |z| < C < |z| < D < |z| < A < |z| < 2 Câu 42 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ A B z số thực Giá trị lớn + z2 √ C 2 D Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = x2 + mx + Câu 44 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B Không có m C m = D m = −1 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 11 17 21 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 B C D A 10 Câu 48 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −2x4 + 4x2 C y = x3 − 3x2 D y = −x4 + 2x2 + Câu 49 Chọn mệnh đề mệnh đề sau: R2 R3 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B −4 C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001