Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cá[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 2a a 3a A B √ C √ D 5 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; 2; 0) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 5; 0) C (0; −5; 0) D (0; 1; 0) √ Câu lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ Cho A 3a3 B 3a3 C 3a3 D a3 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x2 − 2x + C y = x − 2x + 3x + D y = x3 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = x3 − 2x2 + 3x + B y = x−1 C y = tan x D y = sin x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B −4 < m < C < m , D ∀m ∈ R Câu Bất đẳng thức sau đúng? √ √ π e π A 3√ < 2π B ( + 1) > ( + 1) √ e π −e −e D > C ( − 1) < ( − 1) + 2x x+1 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 10 Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = x4 + C y = −x4 + D y = −x4 + 2x2 + Câu 11 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m > D m ≥ a Câu 12 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 600 B 450 C 300 D 1350 Câu 13 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Trang 1/5 Mã đề 001 Câu 14 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C m < D Không tồn m A m < B < m < 3 Câu 15 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 16 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B −2 ≤ m ≤ C < m < D m = Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; 2) C (2; −1; −2) D (−2; 1; 2) Câu 18 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = −1+ ln 5 ln ln x x C y = − D y = +1− ln ln 5 ln ln Câu 19 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 D A B −6 C Câu 20 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 360 B 450 C 600 D 300 Câu 21 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu 22 Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga (x − 2)2 = 2loga (x − 2) C loga2 x = loga x D loga x2 = 2loga x Câu 23 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C πR3 D 4πR3 Câu 24 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; −2; 0) √ ′ ′ ′ Câu 25 Cho lăng trụ ABC.A B C có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: √ A a3 B 3a3 C 3a3 D 3a3 Câu 26 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √h √ √ √ 2π − 3 2π − π− 3 A B C D 12 12 Câu 27 Họ nguyên hàm hàm số y = (x − 1)e x là: A xe x + C B (x − 2)e x + C C (x − 1)e x + C D xe x−1 + C Trang 2/5 Mã đề 001 Câu 28 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 B 6a C D 3a A 3a R4 R4 R1 Câu 29 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 A B 18 −1 C −2 D √3 a2 b Câu 30 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B − C D 3 x2 + 2x Câu 31 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B −2 C 15 D Câu 32 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x C x3 − x4 + 2x D x3 + − 4x + A 2x3 − 4x4 B x3 + 4 2x − Câu 33 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±2 B m = ±1 C m = ±3 D m = ± Câu 34 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 4a3 C 9a3 D 6a3 A 3a3 3x cắt đường thẳng y = x + m Câu 35 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = −1 + 2t x = + 2t x = + 2t y = −2 + 3t y = + 3t y = −2 + 3t y = −2 − 3t A B C D z = + 5t z = −4 − 5t z = − 5t z = − 5t Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 12π C 8π D 6π Câu 38 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C r 3x + Câu 39 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−1; 4) ———————————————– C D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) D −3 Trang 3/5 Mã đề 001 Câu 40 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 41 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = D m = m = −10 Câu 42 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − D R3 (x2 − 2x)dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 |x2 − 2x|dx d Câu 43 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) C a D 2a A a B a Câu 44 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = − (x − 2x)dx + (x2 − 2x)dx B C D R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx (x2 − 2x)dx Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −4 C D −2 Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 3x Câu 48 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m Trang 4/5 Mã đề 001 √ Câu 49 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình với x ∈ (4; +∞) C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình vơ nghiệm Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 3mn + n + 2mn + n + D log2 2250 = C log2 2250 = n n - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001