Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B ∀m ∈ R C −4 < m < D m < Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? C ln x > ln y D loga x > loga y A log x > log y B log x > log y a Câu Tính I = R1 √3 a 7x + 1dx 60 45 21 B I = C I = 28 28 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x 13 C A −6 B π x F( ) = Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = − 4 4 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x3 C y = −x4 + 3x2 − D y = x2 − 2x + A I = D I = 20 =0 D π π √ Tìm F( ) π π ln D F( ) = + 4 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = −15 D m = Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −1 C f (−1) = −5 D f (−1) = −3 Câu 10 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln − C − ln − D ln + 2 2 R dx = ln T Giá trị T là: Câu 11 Biết 2x − √ A T = B T = 81 C T = D T = Câu 12 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 5 Trang 1/5 Mã đề 001 √ Câu 13 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Khơng có tiệm cận Câu 14 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu 15 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể tích khối nón √ 2π.a3 π 2.a3 π.a3 4π 2.a3 B C D A 3 3 Câu 16 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B C π D ax + b Câu 17 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ad > C ac < D bc > Câu 18 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −2 C m = D m = −15 Câu 19 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến R x tập xác định Câu 20 Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = C y = D y = − R R R R 2 Câu 21 Hàm số sau đồng biến R? A y = tan x B y = x√4 + 3x2 + √ C y = x D y = x2 + x + − x2 − x + Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = 29 C R = D R = Câu 23 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a 5a a 2a A B C √ D √ 5 Câu 24 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (0; 2; 0) C (0; −2; 0) D (−2; 0; 0) p Câu 25 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Re lnn x Câu 26 Tính tích phân I = dx, (n > 1) x 1 1 A I = B I = C I = D I = n + n−1 n+1 n Trang 2/5 Mã đề 001 2x − Câu 27 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±2 B m = ±1 C m = ± D m = ±3 Câu 28 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga x có nghĩa với ∀x ∈ R B loga (xy) = loga x.loga y n D loga = a loga a = C loga x = log x , (x > 0, n , 0) an Câu 29 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho√tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S B 75dm2 C 125dm2 D 106, 25dm2 A 50 5dm2 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 3; 5) B (−2; 2; 6) C (1; −2; 7) D (4; −6; 8) x−3 y−6 z−1 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: y z−1 x y−1 z−1 x−1 = = B = = A −1 −3 −3 x y−1 z−1 x y−1 z−1 C = = D = = −1 −1 −3 x2 + 2x Câu 32 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ B 15 C D −2 A 3x − Câu 33 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = (1; 2) B S = [1; 2] C S = (−∞; 1] ∪ [2; +∞) D S = (0; 1] ∪ [2; +∞) r 3x + Câu 34 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−1; 4) ———————————————– Câu 35 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 6a C 3a D 9a3 A 4a Câu 36 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 25 23 A B C D 4 4 Câu 37 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 3 Trang 3/5 Mã đề 001 Câu 38 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 33π 32π B 6π C D A 5 √ Câu 39 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình với x ∈ (4; +∞) Câu 40 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 30 3a A B C D 2 10 Câu 41 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx (x2 − 2x)dx x2 + mx + đạt cực tiểu điểm x = x+1 C m = −1 D m = Câu 42 Tìm tất giá trị tham số m để hàm số y = A Khơng có m B m = Câu 43 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 D y = −2x4 + 4x2 Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a < a x > ay ⇔ x < y x y C Nếu a > a > a ⇔ x < y D Nếu a > a x > ay ⇔ x > y Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B m < C −3 ≤ m ≤ D −4 ≤ m ≤ −1 Câu 46 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = Câu 48 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = m = −10 C m = D m = Trang 4/5 Mã đề 001 Câu 49 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ B C D A 2 Câu 50 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001