1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (709)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,38 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính I = 1∫ 0 3√7x + 1dx A I = 21 8 B I = 60 28 C I = 20 7 D I = 45 28 C[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính I = R1 √3 7x + 1dx A I = 21 B I = 60 28 C I = 20 D I = 45 28 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 2a a 3a A B √ C √ D 5 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường parabol C Đường tròn D Đường elip Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; −2; 0) Câu Cho hình chóp S ABCcó cạnh đáy a cạnh bên tích khối chóp là: q b Thể √ √ a2 b2 − 3a2 a2 3b2 − a2 A VS ABC = B VS ABC = 12 √ √ 12 3ab2 3a2 b D VS ABC = C VS ABC = 12 12 Câu R6 Công thức sai? R A R a x = a x ln a + C B R sin x = − cos x + C C cos x = sin x + C D e x = e x + C Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B m < C −4 < m < Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 52 C yCD = −2 + 2x x+1 D < m , D yCD = 36 Câu 10 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 11 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A m = B −2 ≤ m ≤ C < m < D −2 < m < Trang 1/5 Mã đề 001 Câu 12 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A √ Câu √ 13 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 450 C 1200 D 300 ; y = 0; x = 0; x = Câu 14 Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln − B ln + C − ln D ln − 2 2 √ Câu 15 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A ( ; +∞) B (0; ) C (1; +∞) D (0; 1) 4 Câu 16 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số đồng biến khoảng (−3; 1) Câu 17 Hàm số sau đồng biến R? A y = x4 + 3x2 + C y = x2 √ √ B y = x2 + x + − x2 − x + D y = tan x Câu 18 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 √ ′ ′ ′ ′ Câu 19 √ B3C có đáy a, AA3 = 3a Thể tích khối3 lăng trụ cho là: √ 3Cho lăng trụ ABC.A B 3a C 3a D a A 3a Câu 20 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ 0; +∞) D S = [ -ln3; +∞) Câu 21 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B πR3 C 4πR3 D 6πR3 Câu 22 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 23 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 − 2x2 + 3x + C y = x3 D y = −x4 + 3x2 − Câu 24 Hình nón có bán kính đáy √ tích xung quanh √ R, đường sinh l diện C π l2 − R2 D πRl A 2πRl B 2π l2 − R2 Câu 25 Kết đúng? R A sin2 x cos x = −cos2 x sin x + C R sin3 x + C C sin2 x cos x = − B R sin2 x cos x = sin3 x + C sin2 x cos x = cos2 x sin x + C √ Câu 26 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích √ khối chóp S ABC √ √ √ 2a a3 a3 A B C D a3 3 D R Trang 2/5 Mã đề 001 Câu 27 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ π− 2π − 2π − 3 B C D A 12 12 m Câu 28 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 A S = (−5; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 6) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−2; − ) ∪ ( ; 7) 4 √ Câu 29 Cho hình chóp tứ giác S ABCD có đáy hình vuông cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 A D B C a Câu 30 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ C 4π D 8π A 2π B 3π Câu 31 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x ln C y′ = (2x − 3)5 x −3x B y′ = x −3x ln D y′ = (x2 − 3x)5 x −3x ln Câu 32 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 33 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung diện tích mặt đáy nhỏ nhất, S √ quanh 2 C 75dm2 D 106, 25dm2 A 125dm B 50 5dm Câu 34 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 6a3 B 9a3 C 3a3 D 4a3 Câu 35 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C D −4 Câu 36 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 37 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B C 6π D 5 Trang 3/5 Mã đề 001 Câu 38 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = m = −16 C m = D m = d Câu 39 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng √ (ABC) √ cách từ S đến mặt phẳng D a A 2a B a C a Câu 40 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080254 đồng C 36080255 đồng D 36080253 đồng Câu 41 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 42 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 21 11 17 10 31 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 Câu 43 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 500π 250π 125π 400π B C D A 9 Câu 44 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx (x2 − 2x)dx Câu 45 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + B log2 2250 = A log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m x2 + mx + Câu 46 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = −1 B Khơng có m C m = D m = Câu 47 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ √ cách hai đường√thẳng MN S C 3a 3a 30 a 15 3a A B C D 10 2 Câu 48 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = D m = m = −10 Trang 4/5 Mã đề 001 Câu 49 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A B C 6π D 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 04/04/2023, 11:23

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w