Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA′ = 4 √ 3a Thể tích khối lă[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ ′ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối √ lăng trụ cho là: √ 3 D 3a3 A a B 3a C 3a Câu Tính I = R1 √3 7x + 1dx 20 45 B I = 28 Câu R3 Công thức sai? A R sin x = − cos x + C C a x = a x ln a + C A I = C I = 21 D I = 60 28 R B R cos x = sin x + C D e x = e x + C Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 a2 3b2 − a2 B VS ABC = A VS ABC = √ 12 √ 12 3a b 3ab2 C VS ABC = D VS ABC = 12 12 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H4) D (H1) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 300 C 450 D 360 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 100a3 C 60a3 D 20a3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m ≥ −1 D m > Câu 10 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B (1; 2) C [2; +∞) D (1; 2] Câu 11 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B 3π C π D 4π √ x Câu 12 Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Câu 13 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(0; −1; 2) D I(1; 1; 2) Trang 1/5 Mã đề 001 √ d = 1200 Gọi Câu 14 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ phẳng (A1 BK) √ cách từ điểm I đến mặt √ a 15 a a B a 15 D A C √ Câu 15 Cho a > a , Giá trị alog a bằng? √ A B C D √ Câu 16 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B a C D A 2 Câu R17 Công thức sai? R A R sin x = − cos x + C B R a x = a x ln a + C C cos x = sin x + C D e x = e x + C Câu 18 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(6; −17; 21) D C(20; 15; 7) A C(8; ; 19) R1 √3 Câu 19 Tính I = 7x + 1dx 21 60 45 20 B I = C I = D I = A I = 28 28 Câu 20.√Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh 2 A 2π l − R B 2πRl C π l2 − R2 D πRl Câu 21 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến R Câu 22 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = +1− A y = ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu 23 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3ab a2 3b2 − a2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Câu 24 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 12 (m) B S = 20 (m) C S = 28 (m) D S = 24 (m) m R dx Câu 25 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 2m + m+2 m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 m+2 2m + m+2 √ Câu 26 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích khối chóp S ABC √ √ √ 3 √ a 2a a A a3 B C D 3 Trang 2/5 Mã đề 001 Câu 27 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 √ Câu 28 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 A a B C D Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 2; 6) B (4; −6; 8) C (−2; 3; 5) D (1; −2; 7) Câu 31 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −1; 1) B (1; −2; −3) C (1; 1; 3) D (−1; 1; 1) 1 Câu 32 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m > C m < D m > m < x−3 y−6 z−1 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x−1 y z−1 x y−1 z−1 A = = B = = −1 −3 −3 y−1 z−1 x y−1 z−1 x = = D = = C −1 −3 −1 Câu 34 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 23 27 25 B C D A 4 4 √ Câu 35 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = √ D y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 36 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ √ √ cách hai đường thẳng 3a 30 3a a 15 3a A B C D 10 2 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 38 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C D 6π 5 Trang 3/5 Mã đề 001 Câu 39 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 40 Trong không gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 41 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x4 + 3x2 4x + C y = D y = x3 + 3x2 + 6x − x+2 R ax + b 2x Câu 42 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080251 đồng C 36080255 đồng D 36080254 đồng Câu 44 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox D m > A m > m < − B m > m < −1 C m < −2 Câu 45 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 500π 250π 125π 400π A B C D 9 Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C D −4 Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 a3 15 A B C D 16 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 50 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 4a3 C 6a3 D 12a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001