1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (502)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,71 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x B Hàm số nghịch biến (0; +∞) D Hàm số đồng biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Hàm số sau đồng biến R? A y = tan √ √ x C y = x2 + x + − x2 − x + B y = x4 + 3x2 + D y = x2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; 1; 2) C (−2; −1; 2) D (2; −1; −2) Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m > e2 C m > 2e D m ≥ e−2 Câu 5.√Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh √ B 2πRl C πRl D 2π l2 − R2 A π l2 − R2 Câu 6.√ Bất đẳng thức √ esau đúng? π A ( + 1) > ( + 1) C 3π < 2π −e B 3√ > 2−e √ e π D ( − 1) < ( − 1) Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường elip C Đường tròn D Đường hypebol Câu Cho hai số thực a, bthỏa√ mãn √a > b > Kết luận nào√sau sai? √ √ √ C a < b D a− < b− A ea > eb B a > b Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a a 15 A a 15 B C D √ Câu 11 Đạo hàm hàm số y = log 3x − là: 6 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 12 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B −2 < m < C < m < D m = Câu 13 Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2) C (−∞; 2] D (1; 2] Trang 1/5 Mã đề 001 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 C Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng Câu 14 Cho hàm số y = Câu 15 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m = C m , D m , Câu 16 Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu 17 Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga x2 = 2loga x C loga (x − 2)2 = 2loga (x − 2) D loga2 x = loga x √ ′ ′ ′ ′ Câu 18 = 3a Thể tích khối lăng trụ cho là: √ B3C có đáy a, AA √ 3Cho lăng trụ ABC.A A 3a B 3a C a D 3a3 Câu 19 Hàm số sau đồng biến R? A y = x2 C y = x4 + 3x2 + √ √ B y = x2 + x + − x2 − x + D y = tan x Câu 20 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ≥ D m ∈ (0; 2) A m ∈ (−1; 2) B −1 < m < Câu 21 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (2; −1; 2) D (−2; −1; 2) Câu 22 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3ab 3a b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 23 Cho hàm số y = cx + d A ad > B ac < C bc > D ab < Câu 24 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≥ C m ≤ D m > Câu 25 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 2a 3a 5a A B √ C D √ 5 Trang 2/5 Mã đề 001 Câu 26 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 24π(dm3 ) B 54π(dm3 ) C 12π(dm3 ) D 6π(dm3 ) Câu 27 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 C 3a D 6a A 3a B Câu 28 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 5π 20 5πa3 A V = πa B V = a C V = D V = πa3 6 Câu 29 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (−1; 1; 1) B (1; 1; 3) C (1; −2; −3) D (1; −1; 1) Câu 30 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x ln C y′ = x −3x ln B y′ = (x2 − 3x)5 x −3x ln D y′ = (2x − 3)5 x −3x Câu 31 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (−2; 2; 6) C (−2; 3; 5) D (1; −2; 7) Câu 32 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S √ A 106, 25dm2 B 75dm2 C 125dm2 D 50 5dm2 Câu 33 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga xn = log x , (x > 0, n , 0) B loga = a loga a = an C loga x có nghĩa với ∀x ∈ R D loga (xy) = loga x.loga y Câu 34 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = ln a D P = 2loga e Câu 35 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 15 B R = 14 C R = D R = d Câu 36 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B a C 2a D a Câu 37 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = D m = m = −16 Câu 38 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 23 27 25 B C D A 4 4 Trang 3/5 Mã đề 001 Câu 39 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 40 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 3a 30 A B C D 2 10 R ax + b 2x Câu 41 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 42 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B C 1 R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − D R3 1 |x − 2x|dx = − (x2 − 2x)dx (x2 − 2x)dx R2 (x − 2x)dx + R3 (x2 − 2x)dx Câu 43 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 500π 400π 250π 125π B C D A 9 Câu 44 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 15 πa2 17 A B C D 4 Câu 45 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 10 16 11 17 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 2 C (x − 1) + (y + 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương →         x = + 2t x = −1 + 2t x = + 2t x = − 2t             y = −2 − 3t y = + 3t y = −2 + 3t y = −2 + 3t A  B  C  D           z = − 5t  z = + 5t  z = − 5t  z = −4 − 5t Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Trang 4/5 Mã đề 001 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C −2 D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 04/04/2023, 11:22

w