Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số nghịch biến R Câu Tính I = R1 √3 7x + 1dx A I = 20 B I = 45 28 C I = 60 28 D I = 21 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ac < C ad > D bc > Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = −1+ ln 5 ln ln x x − D y = +1− C y = ln ln 5 ln ln Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B aloga x = x C loga x2 = 2loga x D loga2 x = loga x Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu Hàm số sau đồng biến R? A y = x√2 √ C y = x2 + x + − x2 − x + B y = x4 + 3x2 + D y = tan x √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a D A B C a 2 Câu 10 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = −2 D yCD = Câu 11 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; +∞) B [ ; 2] [22; +∞) C [22; +∞) D ( ; 2] [22; +∞) 4 √ sin 2x Câu 12 Giá trị lớn hàm số y = ( π) R bằng? √ A B π C D π Trang 1/6 Mã đề 001 Câu 13 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A − B C D 6 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , C m = D m , −1 R Câu R15 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = 2F(2x − 1) + C R R D f (2x − 1)dx = F(2x − 1) + C C f (2x − 1)dx = F(2x − 1) + C Câu 16 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều√cao tứ diện √ tiếp √ 2π 2.a π 3.a2 π 2.a2 A B C D π 3.a2 3 x x Câu 17 Số nghiệm phương trình + 5.3 − = A B C D Câu 18 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m ≥ D m > R1 √3 Câu 19 Tính I = 7x + 1dx 60 21 45 20 B I = C I = D I = A I = 28 28 Câu 20 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 24 (m) B S = 20 (m) C S = 28 (m) D S = 12 (m) Câu 21 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 → − Câu 22 Trong hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? √ không gian với→ → − − −u | = −u | = A | u | = B | u | = C |→ D |→ Câu 23 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = x3 − 2x2 + 3x + 3x + C y = D y = tan x x−1 Câu 24 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; −2; 0) C (0; 2; 0) D (0; 6; 0) Câu 25 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến (0; +∞) C Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) m Câu 26 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 A S = (−2; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 7) 4 4 19 C S = (−5; − ) ∪ ( ; 6) D S = (−3; −1) ∪ (1; 2) 4 Trang 2/6 Mã đề 001 √ Câu 27 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 2a3 a3 3 A B a C D 3 Câu 28 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 D 3a A 3a B 6a C Câu 29 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 46.538667 đồng C 45.188.656 đồng D 48.621.980 đồng Câu 30 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga x có nghĩa với ∀x ∈ R C loga (xy) = loga x.loga y D loga xn = log x , (x > 0, n , 0) an 2x − Câu 31 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ± B m = ±2 C m = ±3 D m = ±1 Câu 32 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 8,9 B 11 C 33,2 D 2,075 Câu 33 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu 34 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 Câu 35 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa 17 πa2 17 A B C D 4 Câu 36 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 A e2x dx = + C B (2x + 1)2 dx = +C R R C sin xdx = cos x + C D x dx =5 x + C Câu 37 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 3a B 9a C 6a D 4a3 √ Câu 38 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ 2(x − 1) ln (x − 1)log4 e (x − 1) ln x2 − ln Trang 3/6 Mã đề 001 Câu 39 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080255 đồng C 36080253 đồng D 36080254 đồng r 3x + Câu 40 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) ———————————————– B D = (−∞; 0) C D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) Câu 41 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x = ay ⇔ x = y D Nếu a > a x > ay ⇔ x < y Câu 42 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A B C 6π D 5 Câu 43 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + 2πR2 C S = πRl + πR2 D S = 2πRl + 2πR2 Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080253 đồng C 36080255 đồng D 36080254 đồng Câu 45 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox C m > m < −1 D m < −2 A m > m < − B m > √ 2x − x2 + Câu 46 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 47 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = D m = m = −10 Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 3a3 B 4a3 C 6a3 D 9a3 Câu 49 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 15 πa 17 πa2 17 A B C D 4 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 14 B R = 15 C R = D R = Trang 4/6 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001