Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng? A y = x3 − 2x2 +[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = x3 − 2x2 + 3x + B y = x−1 C y = tan x D y = sin x x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = −1 B y = − C y = D y = R R R R 2 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 20 (m) B S = 28 (m) C S = 24 (m) D S = 12 (m) √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π B V = π C V = D V = A V = 3 ′ Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu Kết đúng? R sin3 x A sin2 x cos x = − + C R C sin2 x cos x = −cos2 x sin x + C sin3 x + C R D sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ B R = C R = 29 D R = A R = 21 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x +1− B y = − A y = ln ln 5 ln ln x x C y = −1+ D y = + ln ln 5 ln Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(0; 2; 3) C A(1; 0; 3) D A(1; 2; 0) Câu 10 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , C m , −1 D m = Câu 11 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 12 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A 3(m2 ) B (m2 ) C (m2 ) D (m ) Trang 1/6 Mã đề 001 Câu 13 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C −1 D π Câu 14 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 = B = C = D = A V2 V2 V2 V2 √ Câu 15 Đạo hàm hàm số y = log 3x − là: 6 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 16 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B m < C < m < D Không tồn m 3 Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; 1; 2) Câu 18 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (−2; −3; −1) C M ′ (2; 3; 1) D M ′ (2; −3; −1) Câu 19 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 30a3 C 20a3 D 100a3 Câu 20 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 5a 3a a 2a B √ C D A √ 5 Câu 21 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m ≥ D m > Câu R22 Công thức sai? A R sin x = − cos x + C C a x = a x ln a + C R B R cos x = sin x + C D e x = e x + C Câu 23 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu 24 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = x3 D y = −x4 + 3x2 − Câu 25 Kết đúng? R sin3 x A sin x cos x = + C R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C D R sin3 x sin x cos x = − + C Trang 2/6 Mã đề 001 Câu 26 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 48m B 47m C 49m D 50m Câu 27 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D √ Câu 28 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 B C a A D √ x− x+2 Câu 29 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung diện tích mặt đáy nhỏ nhất, S √ quanh 2 C 75dm2 D 106, 25dm2 A 125dm B 50 5dm Câu 31 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga (xy) = loga x.loga y B loga = a loga a = n D loga x có nghĩa với ∀x ∈ R C loga x = log x , (x > 0, n , 0) an Câu 32 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 10 a 3a 13 B C D A 13 26 20 Câu 33 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin góc hai mặt phẳng √ (SAC) (SBC) bằng? √ 2 A B C D 2 Câu 34 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080251 đồng D 36080255 đồng π R2 Câu 35 Biết sin 2xdx = ea Khi giá trị a là: A B ln C D − ln d Câu 36 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng √ (ABC) √ cách từ S đến mặt phẳng A a B 2a C a D a Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 8π C 6π D 12π Câu 38 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Trang 3/6 Mã đề 001 Câu 39 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (−1; 1) C (1; 5) D (3; 5) Câu 40 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 41 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = 15 C R = 14 D R = Câu 42 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 43 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 15 πa2 17 A B C D 4 Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x = ay ⇔ x = y D Nếu a > a x > ay ⇔ x < y Câu 45 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 4a3 C 12a3 D 3a3 Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 x2 + mx + Câu 47 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = −1 B m = C Khơng có m D m = r Câu 48 Tìm tập xác định D hàm số y = A D = (−∞; 0) C D = (−1; 4) 3x + x−1 B D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) log2 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 a 15 3a 3a A B C D 10 Trang 4/6 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001