Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C 6πR3 D πR3 Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + D y = tan x C y = x−1 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường elip C Đường tròn D Đường parabol + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B < m , C −4 < m < D m < Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π D 3π A 3π B C √ 3 Câu Bất đẳng thức sau đúng? π A 3√ < 2π √ π e C ( + 1) > ( + 1) −e B 3√ > 2−e √ e π D ( − 1) < ( − 1) √ ′ ′ ′ ′ Câu Cho lăng trụ ABC.A B C có đáy a, AA = trụ cho là: √ 3a Thể tích khối lăng √ 3 C 3a D 3a A a B 3a Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 5; 0) C (0; −5; 0) D (0; 1; 0) Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B π C 2π D 4π Câu 10 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 11 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D 2x + 2017 (1) Mệnh đề đúng? Câu 12 Cho hàm số y = x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 Trang 1/6 Mã đề 001 B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng Câu 13 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A √ x x Câu 14 Tìm nghiệm phương trình = ( 3) A x = B x = C x = −1 D x = R Câu 15 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu 16 Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2] C (1; 2) D (−∞; 2] Câu 17 Hình nón có bán kính đáy R, đường sinh l diện √ √ tích xung quanh D π l2 − R2 A πRl B 2πRl C 2π l2 − R2 Câu 18 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a a 2a D A √ B √ C 5 R1 √3 Câu 19 Tính I = 7x + 1dx 45 20 60 21 B I = C I = D I = A I = 28 28 Câu 20 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = 13 C m = D m = −2 Câu 21 Kết đúng? R R sin3 x + C B sin2 x cos x = cos2 x sin x + C A sin2 x cos x = 3 R R sin x C sin2 x cos x = − + C D sin2 x cos x = −cos2 x sin x + C Câu 22 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 12 (m) B S = 28 (m) C S = 20 (m) D S = 24 (m) Câu 23 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B log x > log y C loga x > loga y a a Câu 24 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = cos x D ln x > ln y B y = x4 + 3x2 + D y = x2 p Câu 25 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux = y = −3 C Nếu < x < π y > − 4π2 D Nếux > thìy < −15 Trang 2/6 Mã đề 001 x2 + 2x Câu 26 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A −2 B C 15 D 3x − Câu 27 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = (0; 1] ∪ [2; +∞) B S = [1; 2] C S = (1; 2) D S = (−∞; 1] ∪ [2; +∞) Câu 28 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 11 B 2,075 C 8,9 D 33,2 Câu 29 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π 3π π B V = C V = D V = A V = 2 Câu 30 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 √ Câu 31 Cho hình chóp tứ giác S ABCD có đáy hình vuông cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a B C a D A Câu 32 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: A 3π B 4π C 8π D 2π Câu 33 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m < −3 B m ≤ −2 √ x3 − (m + 2)x2 + (m − 8)x + m5 nghịch C m ≤ Câu 34 Tính đạo hàm hàm số y = log4 x2 − 1 x x A y′ = B y′ = √ C y′ = (x − 1) ln 2(x − 1) ln x2 − ln D m ≥ −8 D y′ = (x2 x − 1)log4 e Câu 35 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vuông góc với mặt phẳng (ABC), S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Câu 36 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B 6π C D 5 Câu 37 Chọn mệnh đề mệnh đề sau: R R e2x A e2x dx = + C B x dx =5 x + C R R (2x + 1)3 C (2x + 1) dx = +C D sin xdx = cos x + C Trang 3/6 Mã đề 001 Câu 38 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080254 đồng C 36080253 đồng D 36080255 đồng Câu 39 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 40 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 41 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −10 C m = m = −16 D m = Câu 42 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = ln a C P = + 2(ln a)2 D P = 2loga e −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ → − → − → − → − C u + v = (1; 14; 15) D u + v = (1; 13; 16) r 3x + Câu 44 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−∞; 0) C D = (−1; 4) D D = (1; +∞) Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 B C D A 10 Câu 46 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 Câu 47 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = 2loga e C P = D P = + 2(ln a)2 Câu R48 Chọn mệnh đề mệnh đề sau: R A x dx =5 x + C B sin xdx = cos x + C R R (2x + 1) e2x C (2x + 1)2 dx = + C D e2x dx = +C Câu 49 Hàm số hàm số sau đồng biến R 4x + A y = B y = x4 + 3x2 x+2 C y = x3 + 3x2 + 6x − D y = −x3 − x2 − 5x Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −x4 + 2x2 + C y = x3 − 3x2 D y = −2x4 + 4x2 Trang 4/6 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001