Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên tập xác định của nó là A m[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = C y = −1 D y = − A y = R R R R 2 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 6πR3 C 4πR3 D πR3 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 √ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA√′ = 3a Thể tích khối√lăng trụ cho là: A 3a3 B a3 C 3a3 D 3a3 A B −6 C D Câu Cho < a , 1; < x , Đẳng thức sau sai? B loga (x − 2)2 = 2loga (x − 2) A aloga x = x C loga x2 = 2loga x D loga2 x = loga x Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ∈ (0; 2) C −1 < m < D m ≥ Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m > C m ≥ e−2 D m > e2 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x + B y = +1− A y = ln 5 ln ln x x C y = − D y = −1+ ln ln 5 ln ln 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu 10 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m > D m ≥ −1 Câu 11 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 A (m ) B (m ) C 3(m ) D (m ) Câu 12 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(1; 1; 2) C I(0; −1; 2) D I(0; 1; −2) Trang 1/6 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x + y + 2z = C (P) : x − 2y − = D (P) : x − y − 2z = Câu 14 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D R dx = ln T Giá trị T là: Câu 15 Biết 2x − √ A T = B T = 81 C T = D T = Câu 16 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A − B C D 6 Câu 17 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m ≥ e−2 B m > 2e C m > e2 D m > Câu 18 Hình nón có bán kính √ đáy R, đường sinh l diện tích xung quanh nó√bằng C 2πRl D 2π l2 − R2 A πRl B π l2 − R2 Câu 19 Hàm số sau cực trị? A y = cos x C y = x4 + 3x2 + B y = x3 − 6x2 + 12x − D y = x2 Câu 20 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; 2) C S = [ 0; +∞) D S = (−∞; ln3) Câu 21 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 Câu 22 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) Câu 23 Cho hình chóp S ABCcó cạnh đáy là: q √ a b2 − 3a2 A VS ABC = √ 12 3a b C VS ABC = 12 Câu 24 √ Hàm số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = x4 + 3x2 + a cạnh bên b Thể tích khối chóp √ B VS ABC D VS ABC 3ab2 = 12 √ a2 3b2 − a2 = 12 B y = x2 D y = tan x Câu 25 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 12 (m) B S = 28 (m) C S = 24 (m) D S = 20 (m) Câu 26 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 27 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng Trang 2/6 Mã đề 001 A 3a √ B 3a √ 3a 10 C D 6a x −2x +3x+1 Câu 28 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) B Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) C Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) D Hàm số đồng biến khoảng (−∞; 1) (3; +∞) Câu 29 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa A πa3 B C πa3 D 3πa3 x3 Câu 30 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m ≤ B m ≤ −2 C m ≥ −8 D m < −3 x −1 ≤ là: Câu 31 Tập nghiệm bất phương trình log4 (3 x − 1).log 16 4 A S = (1; 2) B S = (0; 1] ∪ [2; +∞) C S = (−∞; 1] ∪ [2; +∞) D S = [1; 2] 1 + + + ta được: Câu 32 Rút gọn biểu thức M = loga x loga2 x logak x k(k + 1) k(k + 1) k(k + 1) 4k(k + 1) A M = B M = C M = D M = loga x 3loga x 2loga x loga x Câu 33 Tứ diện OABC có OA = OB = OC = a đôi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 x+cos3x Câu 34 Tính đạo hàm hàm số y = A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 36 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ B R = C R = D R = 15 A R = 14 Câu 37 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 33π 32π A B C D 6π 5 Câu 38 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 3a3 C 4a3 D 6a3 Câu 39 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc DB′ Tính giá trị cos α.√ √ hai đường thẳng AC √ 3 A B C D Trang 3/6 Mã đề 001 Câu 40 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 30 3a B C D A 2 10 Câu 41 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B C D ln Câu 42 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 43 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m < C m > −2 D −3 ≤ m ≤ Câu 44 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 3a 3a a 15 B C D A 10 √ Câu 45 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ (4; +∞) Câu 46 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−1; 1) D (−3; 0) Câu 47 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a < a x > ay ⇔ x < y Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu R49 Chọn mệnh đề mệnh đề sau: R A x dx =5 x + C B sin xdx = cos x + C R R e2x (2x + 1) + C D e2x dx = +C C (2x + 1)2 dx = Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 4/6 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001