Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên tập xác định của nó là A m[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x tập xác định +1 1 A y = B y = −1 C y = D y = − R R R R 2 Câu Cho hình S ABCcó cạnh đáy a cạnh bên √ b Thể tích khối chóp là: √ chóp a2 3b2 − a2 3ab2 A VS ABC = B VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < y < −3 C Nếux = y = −3 D Nếu < x < π y > − 4π2 Câu Giá trị nhỏ hàm số y = x2 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 20 (m) B S = 24 (m) C S = 28 (m) D S = 12 (m) Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A −1 < m < B m ∈ (−1; 2) C m ≥ D m ∈ (0; 2) Câu Cho hai số thực a, bthỏa√ mãn √a > b > Kết luận nào√sau sai? √ √ √ A ea > eb B a > b C a < b D a− < b− Câu Hàm số sau khơng có cực trị? A y = cos x C y = x2 B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 Câu 10 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D R5 dx Câu 11 Biết = ln T Giá trị T là: 2x − √ A T = B T = C T = 81 D T = Câu 12 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B 4π C π D 3π Trang 1/5 Mã đề 001 √ d = 1200 Gọi Câu 13 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a a 15 A B a 15 C D 3 Câu 14 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể √ tích3 khối nón √ π 2.a 4π 2.a3 π.a3 2π.a B C D A 3 3 Câu 15 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + 2x2 + D y = x4 + √ Câu √ 16 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 600 C 300 D 1200 p Câu 17 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếu < x < π y > − 4π2 C Nếux = y = −3 D Nếux > thìy < −15 Câu 18 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ≥ C m ∈ (0; 2) D −1 < m < Câu 19 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 450 C 300 D 600 Câu 20 Cho mãn a > b > Kết luận nào√sau sai? √ √ √ √5 hai số thực a, bthỏa √5 a b A a < b B e > e C a > b D a− < b− Câu R21 Kết đúng? A sin2 x cos x = −cos2 x sin x + C R sin3 x + C C sin x cos x = sin2 x cos x = cos2 x sin x + C R sin3 x D sin x cos x = − + C B R Câu 22 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu 23 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C loga x > loga y a D log x > log y a Câu 24 Tính I = R1 √3 7x + 1dx 20 A I = B I = 60 28 Câu 25 Hàm số sau khơng có cực trị? A y = x2 C y = cos x C I = 21 D I = 45 28 B y = x3 − 6x2 + 12x − D y = x4 + 3x2 + Câu 26 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = [−1; +∞) B S = (−∞; −4) ∪ (−1; +∞) C S = (−4; −1) D S = (−1; +∞) Trang 2/5 Mã đề 001 Câu 27 Tập xác định hàm số y = logπ (3 x − 3) là: A (1; +∞) B Đáp án khác C (3; +∞) D [1; +∞) Câu 28 Đồ thị hình bên đồ thị hàm số nào? 2x + −2x + 2x + 2x − A y = B y = C y = D y = x+1 1−x x+1 x−1 Câu 29 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 24 12 √ Câu 30 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích khối chóp S ABC √ √ √ √ 2a3 a3 a3 3 C D A a B 3 Câu 31 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga (xy) = loga x.loga y C loga x có nghĩa với ∀x ∈ R D loga xn = log x , (x > 0, n , 0) an Re lnn x dx, (n > 1) x 1 1 A I = B I = C I = n + D I = n n+1 n−1 Câu 33 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 3a 13 a 3a 13 B C D A 26 20 13 Câu 34 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > C m > m < − D m > m < −1 Câu 35 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y Câu 32 Tính tích phân I = d Câu 36 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A 2a B a C a D a Câu 37 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 R3 D |x2 − 2x|dx = (x2 − 2x)dx + R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − (x2 − 2x)dx |x2 − 2x|dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 38 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (−3; 0) C (1; 5) D (3; 5) Trang 3/5 Mã đề 001 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 40 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C D −2 3x cắt đường thẳng y = x + m Câu 41 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = −2 D m = Câu 42 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa 17 πa2 17 A B C D Câu 43 Chọn mệnh đề mệnh đề sau: R R e2x A sin xdx = cos x + C B e2x dx = +C R R (2x + 1)3 + C D x dx =5 x + C C (2x + 1)2 dx = r 3x + Câu 44 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−1; 4) C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = √ Câu 46 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ 2(x − 1) ln (x − 1) ln (x − 1)log4 e x2 − ln Câu 47 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln R ax + b 2x Câu 48 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D √ 2x − x2 + Câu 49 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001