1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (553)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 121,71 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA′ = 4 √ 3a Thể tích khối lă[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ Cho B 3a3 C 3a3 D a3 A 3a Câu Bất đẳng thức sau đúng? π A 3√ < 2π √ e π C ( − 1) < ( − 1) −e B 3√ > 2−e √ π e D ( + 1) > ( + 1) Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? 3x + B y = tan x A y = x−1 C y = sin x D y = x3 − 2x2 + 3x + x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = C y = − D y = −1 R R R R 2 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = − ln ln 5 ln ln x x + D y = +1− C y = ln 5 ln ln Câu Kết đúng? R R sin3 x sin3 x A sin2 x cos x = − + C B sin2 x cos x = + C 3 R R C sin2 x cos x = cos2 x sin x + C D sin2 x cos x = −cos2 x sin x + C , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B √ C D 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B loga2 x = loga x C aloga x = x D loga (x − 2)2 = 2loga (x − 2) Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 A V = B V = C V = D V = 3 5 Câu 10 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều cao tứ diện √ √ 2 √ π 3.a 2π 2.a π 2.a2 A π 3.a B C D 3 Câu 11 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 Trang 1/5 Mã đề 001 V1 V1 V1 = B = C = V2 V2 V2 Câu 12 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = 36 A Câu 13 Cho a > a , Giá √ trị a A B log √a √ bằng? C D V1 = V2 D yCD = D Câu 14 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Khơng có tiệm cận C Có tiệm cận ngang khơng có tiệm cận đứng D Khơng có tiệm cận ngang có tiệm cận đứng √ sin 2x Câu 15 Giá trị lớn hàm R bằng? √ số y = ( π) C D π A B π Câu 16 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(1; 1; 2) B I(0; 1; 2) C I(0; −1; 2) D I(0; 1; −2) Câu 17 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ∈ (0; 2) C m ≥ D −1 < m < Câu 18 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = R √3 7x + 1dx Câu 19 Tính I = 60 45 20 21 A I = B I = C I = D I = 28 28 Câu 20 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (−2; 0; 0) C (0; 2; 0) D (0; 6; 0) Câu 21 Hàm số sau đồng biến R? A y = tan x C y = x4 + 3x2 + B y = x√2 √ D y = x2 + x + − x2 − x + Câu 22 thức sau đúng? √ Bất đẳng √ e π A ( − 1) < ( − 1) C 3−e > 2−e π B 3√ < 2π √ π e D ( + 1) > ( + 1) Câu 23 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường elip C Đường trịn D Đường parabol √ Câu 24 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hoành Tìm thể tích V khối trịn xoay tạo thành π 10π A V = B V = C V = D V = π 3 Câu 25 Kết đúng? R R sin3 x sin3 x A sin2 x cos x = + C B sin2 x cos x = − + C 3 R R C sin2 x cos x = −cos2 x sin x + C D sin2 x cos x = cos2 x sin x + C Trang 2/5 Mã đề 001 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 27 Họ nguyên hàm hàm số y = (x − 1)e x là: A xe x + C B xe x−1 + C C (x − 2)e x + C D (x − 1)e x + C 2x − Câu 28 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±1 B m = ±3 C m = ±2 D m = ± Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung diện tích mặt đáy nhỏ nhất, S √ quanh 2 A 125dm B 50 5dm C 106, 25dm2 D 75dm2 (2 ln x + 3)3 : x (2 ln x + 3)2 (2 ln x + 3)4 ln x + A + C B + C C + C 8 Câu 32 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B (1; +∞) C [1; +∞) √ x− x+2 Câu 33 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C π R2 Câu 34 Biết sin 2xdx = ea Khi giá trị a là: Câu 31 Họ nguyên hàm hàm số f (x) = D (2 ln x + 3)4 + C D (3; +∞) D A B − ln C ln D Câu 35 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (3; 5) C (−1; 1) D (1; 5) Câu 36 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 37 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 38 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B m > −2 C −4 ≤ m ≤ −1 D −3 ≤ m ≤ Câu 39 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 1 |x − 2x|dx = − 2 R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 3/5 Mã đề 001 C D R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx 1 R3 R2 |x − 2x|dx = (x − 2x)dx − 1 R3 (x2 − 2x)dx Câu 40 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox C m > m < −1 D m > A m > m < − B m < −2 Câu 41 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A sin xdx = cos x + C B (2x + 1)2 dx = +C R R e2x + C D x dx =5 x + C C e2x dx = √ Câu 42 Tính đạo hàm hàm số y = log4 x2 − x x x B y′ = C y′ = √ D y′ = A y′ = 2 (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln cos x π F(− ) = π Khi giá trị Câu 43 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B ln + C D ln + 5 5 Câu 44 Chọn mệnh đề mệnh đề sau: R R e2x +C B sin xdx = cos x + C A e2x dx = R R (2x + 1)3 C (2x + 1)2 dx = + C D x dx =5 x + C x2 + mx + đạt cực tiểu điểm x = x+1 C m = −1 D m = Câu 45 Tìm tất giá trị tham số m để hàm số y = A m = B Khơng có m Câu 46 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 15 C R = D R = 14 Câu 47 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 48 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = + 2(ln a)2 D P = Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 30 3a A B C D 2 10 Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 04/04/2023, 11:09

w