Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 6πR3 C πR3 D 4πR3 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = [ 0; +∞) D S = (−∞; 2) x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = −1 C y = D y = A y = − R R R R 2 √ Câu lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ Cho A 3a B 3a3 C a3 D 3a3 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường hypebol C Đường elip D Đường trịn Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ∈ (−1; 2) C −1 < m < D m ≥ x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = − D F( ) = + 4 4 4 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+1 2m + m+2 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+1 2m + m+2 m+2 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π B V = C V = D V = A V = 5 3 Câu 10 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln( ) = B ln(ab2 ) = ln a + ln b b ln b C ln(ab) = ln a ln b D ln(ab2 ) = ln a + (ln b)2 Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = √ Câu 12 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D Câu 13 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Trang 1/5 Mã đề 001 √ d = 1200 Gọi Câu 14 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt phẳng (A1 BK) √ a 15 a a B C D a 15 A 3 Câu 15 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B π C −1 D Câu 16 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [22; +∞) B ( ; 2] [22; +∞) C ( ; +∞) D [ ; 2] [22; +∞) 4 + 2x Câu 17 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B ∀m ∈ R C −4 < m < D m < Câu 18 Hàm số sau khơng có cực trị? A y = cos x C y = x4 + 3x2 + B y = x3 − 6x2 + 12x − D y = x2 Câu 19 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu 20 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(20; 15; 7) D C(6; −17; 21) A C(8; ; 19) Câu 21 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = C R = D R = 21 Rm dx Câu 22 Cho số thực dươngm Tính I = theo m? x + 3x + m+1 m+2 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu 23 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B −1 < m < C m ≥ D m ∈ (0; 2) Câu 24 Hàm số sau đồng biến R? A y = x4 + 3x2 + C y = tan x B y = x√2 √ D y = x2 + x + − x2 − x + √ ′ ′ ′ ′ Câu 25 Cho lăng trụ ABC.A 3a Thể tích khối trụ cho là: B C có đáy a, AA = √ √ lăng 3 A a B 3a C 3a D 3a Câu 26 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa A πa3 B πa3 C D 3πa3 Trang 2/5 Mã đề 001 x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −3 −1 x−1 y z−1 x y−1 z−1 C = = D = = −1 −3 −3 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 28 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc MN mặt phẳng √ (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 A B C D 5 1 Câu 29 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) 4k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = D M = loga x 2loga x loga x 3loga x Câu 30 Tập xác định hàm số y = logπ (3 x − 3) là: A (1; +∞) B [1; +∞) C Đáp án khác Câu 31 Cho hàm số y = A y′ = (2x − 3)5 x −3x ln C y′ = x −3x ln x2 −3x D (3; +∞) Tính y′ B y′ = (x2 − 3x)5 x −3x ln D y′ = (2x − 3)5 x −3x Câu 32 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng (SAC) (SBC) bằng? √ 2 A B C D 2 Câu 33 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 34 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = D m = m = −16 Câu 35 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = −1 + 2t x = + 2t x = + 2t y = + 3t y = −2 + 3t y = −2 − 3t y = −2 + 3t A B C D z = −4 − 5t z = − 5t z = − 5t z = + 5t x2 Câu 36 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 64 128 32 Câu 37 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 29 23 27 A B C D 4 4 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 38 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A u + 3→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Trang 3/5 Mã đề 001 Câu 39 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ πa2 17 πa2 15 πa2 17 πa2 17 B C D A 4 Câu 40 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R2 |x2 − 2x|dx = (x2 − 2x)dx − 1 R2 R3 (x2 − 2x)dx R3 R3 |x2 − 2x|dx = (x2 − 2x)dx + R3 (x2 − 2x)dx (x2 − 2x)dx x2 + mx + Câu 41 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Khơng có m B m = C m = −1 D m = cos x π Câu 42 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π B ln + C D ln + A ln + 5 5 Câu 43 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln √ 2x − x2 + Câu 44 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 11 17 10 16 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D R ax + b Câu 47 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e2x + C Khi giá trị a + b là: A B C D Câu 48 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 49 Trong khơng gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (3; 14; 16) A u + v = (1; 13; 16) B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a a 15 a 15 a 15 A B C D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001