Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > e2 C m > 2e D m > R1 √3 Câu Tính I = 7x + 1dx 20 A I = Câu Cho hàm số y = A ad > B I = 60 28 C I = 21 D I = 45 28 ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d B bc > C ac < D ab < Câu R4 Kết đúng? A sin2 x cos x = −cos2 x sin x + C R sin3 x C sin2 x cos x = + C sin2 x cos x = cos2 x sin x + C R sin3 x D sin2 x cos x = − + C B R Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường parabol C Đường hypebol D Đường elip Câu 6.√ Bất đẳng thức √ esau đúng? π A ( + 1) > ( + 1) C 3−e > 2−e π B 3√ < 2π √ e π D ( − 1) < ( − 1) Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3a b A VS ABC = B VS ABC = 12 √ 12 √ a2 3b2 − a2 3ab2 C VS ABC = D VS ABC = 12 12 Câu R8 Công thức sai? R A R cos x = sin x + C B R sin x = − cos x + C C e x = e x + C D a x = a x ln a + C R Câu Tính nguyên hàm cos 3xdx 1 A sin 3x + C B −3 sin 3x + C C − sin 3x + C D sin 3x + C 3 Câu 10 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(1; 2; 0) C A(0; 2; 3) D A(0; 0; 3) Câu 11 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể√tích khối nón √ 2π.a3 4π 2.a3 π.a3 π 2.a3 A B C D 3 3 Câu 12 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 12 m2 − 4m2 − A B C D 2m m 2m 2m Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B ( ; +∞) C [22; +∞) D ( ; 2] [22; +∞) A [ ; 2] [22; +∞) 4 Câu 14 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ tiếp √ √ π 2.a π 3.a2 2π 2.a2 A B C π 3.a D 3 Câu 15 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = C yCD = 36 Câu 16 Biết R5 A T = 81 dx = ln T Giá trị T là: 2x − B T = C T = √ D yCD = −2 D T = Câu 17 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = C m = −15 D m = 13 + 2x Câu 18 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B < m , C m < D −4 < m < Câu 19 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≥ C m ≤ D m < Câu 20 thức sau đúng? √ Bất đẳng √ e π A ( − 1) < ( − 1) C 3−e > 2−e √ √ π e B ( + 1) > ( + 1) D 3π < 2π Câu 21 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 28 (m) B S = 20 (m) C S = 24 (m) D S = 12 (m) x tập xác định Câu 22 Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = − C y = D y = R R R R 2 Câu 23 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu 24 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; −1; 2) C (2; −1; −2) D (−2; 1; 2) , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B √ C D 3π 3 Câu 25 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Trang 2/5 Mã đề 001 Câu 26 Cho hình chóp S.ABC có đáy ABC tam giác vng cân với BA = BC = a, S A = a vng góc với √ (SAC) (SBC) bằng? √ mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng B C D A 2 2 2 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x + y + z − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 4π B 2π C 8π D 3π Câu 28 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D (2 ln x + 3)3 : Câu 29 Họ nguyên hàm hàm số f (x) = x (2 ln x + 3) (2 ln x + 3)4 (2 ln x + 3)2 ln x + + C B + C C + C D + C A 8 Câu 30 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 13 a 3a 10 A B C D 26 13 20 Câu 31 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−1; +∞) B S = (−4; −1) C S = (−∞; −4) ∪ (−1; +∞) D S = [−1; +∞) Câu 32 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π π 3π A V = B V = C V = D V = 2 x −2x +3x+1 Câu 33 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng (−∞; 1) (3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) D Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) cos x π Câu 34 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A ln + B C ln + D ln + 5 5 Câu 35 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ A R = 14 B R = C R = D R = 15 Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 37 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n Trang 3/5 Mã đề 001 3mn + n + 2mn + 2n + D log2 2250 = n m Câu 38 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 29 23 A B C D 4 4 ′ ′ ′ ′ Câu 39 Cho hình lăng trụ đứng ABCD.A B C D có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ B C D A Câu 40 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = D m = m = −10 π R2 Câu 41 Biết sin 2xdx = ea Khi giá trị a là: C log2 2250 = A ln B C − ln r Câu 42 Tìm tập xác định D hàm số y = log2 D 3x + x−1 A D = (1; +∞) B D = (−1; 4) ———————————————– C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Câu 43 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = m = −16 D m = Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 25 23 27 A B C D 4 4 cos x π Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π A ln + B ln + C D ln + 5 5 ′ ′ ′ ′ Câu 47 Cho hình lăng trụ đứng ABCD.A B C D có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ A B C D 2 Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080255 đồng D 36080251 đồng Trang 4/5 Mã đề 001 Câu 49 Hàm số hàm số sau có đồ thị hình vẽ bên D y = −2x4 + 4x2 A y = −x4 + 2x2 B y = −x4 + 2x2 + C y = x3 − 3x2 R ax + b 2x Câu 50 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001