1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (533)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,21 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u (2;−2; 1), kết luận nào sau[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x2 − 2x + C y = x3 − 2x2 + 3x + D y = x3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến R p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux = y = −3 D Nếux > thìy < −15 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu D πR3 A 4πR3 B πR3 C πR3 x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = − B y = −1 C y = D y = R R R R 2 π π x π F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = − D F( ) = + 4 4 4 Câu Cho mãn a > b > Kết luận sau sai? √ √ √ √ √5 hai số thực a, bthỏa √5 − − A a < b eb D a > b B a R Câu Tính nguyên hàm cos 3xdx 1 A −3 sin 3x + C B sin 3x + C C − sin 3x + C D sin 3x + C 3 Câu 10 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ C m ≥ −1 D m ≥ Câu 11 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C D − 6 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 1 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 R5 dx Câu 13 Biết = ln T Giá trị T là: 2x − √ A T = 81 B T = C T = D T = Trang 1/5 Mã đề 001 Câu 14 Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) ; y = 0; x = 0; x = (x + 1)(x + 2)2 t→+∞ A ln + B − ln − C − ln 2 D ln − Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = y+2 z x−1 = = Viết phương Câu 16 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x − y − 2z = C (P) : x − 2y − = D (P) : x + y + 2z = Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; −1; 2) D (−2; 1; 2) Rm dx theo m? Câu 18 Cho số thực dươngm Tính I = x + 3x + m+2 m+1 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 m+2 m+2 2m + √ Câu 19 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành π 10π A V = B V = C V = π D V = 3 p Câu 20 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếu < x < π y > − 4π2 C Nếux > thìy < −15 D Nếux = y = −3 Câu 21 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = Câu 22 Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga (x − 2)2 = 2loga (x − 2) C loga x2 = 2loga x D loga2 x = loga x Câu 23 Hình nón có bán kính √ đáy R, đường sinh l diện tích xung quanh nó√bằng A πRl B π l2 − R2 C 2πRl D 2π l2 − R2 Câu 24 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 450 C 360 D 600 Câu 25 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C πR3 D 4πR3 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: A 3π B 8π C 2π D 4π Trang 2/5 Mã đề 001 x2 + 2x Câu 27 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A 15 B C D −2 Re lnn x dx, (n > 1) Câu 28 Tính tích phân I = x 1 1 A I = n + B I = C I = D I = n−1 n n+1 Câu 29 Họ nguyên hàm hàm số y = (x − 1)e x là: A xe x + C B (x − 1)e x + C C xe x−1 + C D (x − 2)e x + C Câu 30 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 5 20 5πa3 B V = a C V = πa D V = A V = πa 6 √ Câu 31 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích khối chóp S ABC √ √ √ √ a3 2a3 a3 3 A a C D B 3 Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; 1; 3) B (1; −2; −3) C (1; −1; 1) D (−1; 1; 1) Câu 33 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng √ √ (SAC) (SBC) bằng? A B C D 2 3x Câu 34 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C Không tồn m D m = Câu 35 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > C m > m < −1 D m > m < − Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có    véc tơ phương u      x = + 2t x = − 2t x = −1 + 2t x = + 2t             y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t B  C  D  A           z = + 5t  z = −4 − 5t  z = − 5t  z = − 5t Câu 37 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá trị sin α 15 15 A B C D 10 2 Câu 38 Cho hàm số y = x − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = cos x π Câu 39 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π A ln + B ln + C D ln + 5 5 Trang 3/5 Mã đề 001 Câu 40 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 3a 30 A B C D 2 10 Câu 41 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 15 πa2 17 πa2 17 B C D A 4 √ Câu 42 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = √ B y′ = C y′ = D y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 43 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−3; 0) D (−1; 1) Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080254 đồng C 36080251 đồng D 36080255 đồng Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A ln + 5 B 3π ln + C π cos x F(− ) = π Khi giá trị sin x + cos x 6π D ln + 6π √ Câu 46 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ (4; +∞) √ 2x − x2 + Câu 47 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 30 3a 3a A B C D 10 Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B 6π C D 5 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 04/04/2023, 11:06

w