1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (908)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 122,01 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 = 0 T[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (2; −1; 2) D (−2; −1; 2) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C 6πR3 D πR3 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 m+2 2m + m+1 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+2 2m + m+1 m+2 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (−1; 2) C m ∈ (0; 2) D −1 < m < √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H3) C (H2) D (H1) + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B ∀m ∈ R C −4 < m < D m < Câu Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = −2 B yCD = 36 C yCD = D yCD = 52 R Câu 10 Tính nguyên hàm cos 3xdx 1 C −3 sin 3x + C D sin 3x + C A sin 3x + C B − sin 3x + C 3 ′ ′ ′ ′ Câu 11 Cho hình lập phương ABCD.A B C D có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A √ Câu 12 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận C Khơng có tiệm cận ngang có tiệm cận đứng D Có tiệm cận ngang tiệm cận đứng √ d = 1200 Gọi Câu 13 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a a 15 A a 15 B C D Trang 1/5 Mã đề 001 Câu 14 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B − C D A 6 Câu 15 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − 12 m2 − A B C D 2m 2m m 2m Câu 16 Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu 17 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 B C −6 D A ax + b Câu 18 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A bc > B ab < C ad > D ac < Câu 19 Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga2 x = loga x C loga (x − 2)2 = 2loga (x − 2) D loga x2 = 2loga x Câu 20 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(20; 15; 7) D C(6; −17; 21) A C(8; ; 19) Câu 21 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 0; 5) C (0; 1; 0) D (0; 5; 0) Câu 23 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a 5a a 2a A B C √ D √ 5 Câu 24 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 − 2x2 + 3x + C y = −x4 + 3x2 − D y = x3 x tập xác định Câu 25 Giá trị nhỏ hàm số y = x +1 1 A y = − B y = C y = −1 D y = R R R R 2 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D 2x − Câu 27 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±2 B m = ± C m = ±3 D m = ±1 Trang 2/5 Mã đề 001 Câu 28 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 48.621.980 đồng C 45.188.656 đồng D 46.538667 đồng Re lnn x dx, (n > 1) Câu 29 Tính tích phân I = x 1 1 A I = n + B I = C I = D I = n n−1 n+1 Câu 30 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x + − 4x + B x − x + 2x C x + − 4x D 2x3 − 4x4 4 Câu 31 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga xn = log x , (x > 0, n , 0) an D loga (xy) = loga x.loga y √ Câu 32 Cho hình chóp tứ giác S ABCD có đáy hình vuông cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a A B C a D 3 x −2x +3x+1 Câu 33 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) B Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) C loga x có nghĩa với ∀x ∈ R Câu 34 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + B log2 2250 = A log2 2250 = m n 3mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 35 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − D R2 (x2 − 2x)dx + 1 R3 (x2 − 2x)dx R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx Câu 36 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 33π 31π B C 6π D A 5 Câu 37 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 B y = x3 + 3x2 + 6x − 4x + C y = D y = −x3 − x2 − 5x x+2 √ Câu 38 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm Trang 3/5 Mã đề 001 B Bất phương trình với x ∈ (4; +∞) C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình với x ∈ [ 1; 3] Câu 39 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−3; 0) C (−1; 1) D (1; 5) −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 40 Trong không gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 41 Chọn mệnh đề mệnh đề sau: R R e2x + C A sin xdx = cos x + C B e2x dx = R R (2x + 1)3 C (2x + 1)2 dx = +C D x dx =5 x + C Câu 42 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 10 31 21 11 17 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 44 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 15 πa2 17 πa 17 B C D A 4 Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 9a C 3a D 6a3 A 4a Câu 47 Chọn mệnh đề mệnh đề sau: R R e2x A sin xdx = cos x + C B e2x dx = +C R R (2x + 1)3 C x dx =5 x + C D (2x + 1)2 dx = + C √ 2x − x2 + Câu 48 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C −2 D Trang 4/5 Mã đề 001 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 04/04/2023, 11:05

w