Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0 là A 0 B 1 C 4 D 2 Câu 2 Tì[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > 2e C m > D m > e2 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = x3 − 2x2 + 3x + D y = −x4 + 3x2 − Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 6; 0) → − Câu Trong không gian với hệ tọa√độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = D |→ C |→ A |→ B |→ Câu Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga2 x = loga x C loga (x − 2)2 = 2loga (x − 2) D loga x2 = 2loga x Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; 3; 1) C M ′ (2; −3; −1) D M ′ (−2; −3; −1) Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B πR3 C 6πR3 D 4πR3 √ sin 2x Câu Giá trị lớn hàm R bằng? √ số y = ( π) A B π C D π Câu 10 Cho a > a , Giá trị alog A B √ a bằng? √ C Câu 11 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = D D yCD = 52 Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu 13 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B m < C < m < D m < 3 R Câu 14 Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C sin 3x + C D −3 sin 3x + C 3 Câu 15 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 4π C 2π D 3π Trang 1/5 Mã đề 001 Câu 16 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 17 Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 D 4πR3 A πR3 B πR3 Câu 18.√Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh √ A 2π l2 − R2 B 2πRl C πRl D π l2 − R2 Câu 19 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a a 3a 5a C D √ A √ B 5 √ Câu 20 lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối √ Cho √ lăng trụ cho là: A 3a B 3a3 C a3 D 3a3 Câu 21 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = x3 − 2x2 + 3x + 3x + C y = tan x D y = x−1 −u (2; −2; 1), kết luận sau đúng? Câu 22 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu 23 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 B C D −6 A Câu 24 thức sau đúng? √ Bất đẳng √ π e π A ( + 1) > ( + 1) B 3√ < 2π √ e π C 3−e > 2−e D ( − 1) < ( − 1) Câu 25 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 12 (m) C S = 24 (m) D S = 28 (m) n e R ln x Câu 26 Tính tích phân I = dx, (n > 1) x 1 1 A I = B I = n + C I = D I = n n+1 n−1 Câu 27 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga (xy) = loga x.loga y n C loga x = log x , (x > 0, n , 0) D loga x có nghĩa với ∀x ∈ R an Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 8π B 3π C 4π D 2π Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Trang 2/5 Mã đề 001 Câu 30 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−1; +∞) B S = (−4; −1) C S = (−∞; −4) ∪ (−1; +∞) D S = [−1; +∞) Câu 31 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 B C 6a D 3a A 3a Câu 32 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ sin góc MN mặt phẳng (S BD) √ MN mặt phẳng √ (ABCD) 60 Tính 10 A B C D 5 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 34 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −3 ≤ m ≤ C −4 ≤ m ≤ −1 D m > −2 Câu 35 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = R ax + b 2x )e + C Khi giá trị a + b là: Câu 36 Biết a, b ∈ Z cho (x + 1)e2x dx = ( A B C D Câu 37 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < − B m > C m < −2 D m > m < −1 Câu 38 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 6π C 10π D 12π x2 + mx + Câu 39 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B Khơng có m C m = D m = −1 Câu 40 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ √ √ cách hai đường thẳng a 15 3a 30 3a 3a A B C D 10 Câu 41 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a a 15 a 15 A B C D 16 √ Câu 42 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình vơ nghiệm D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Trang 3/5 Mã đề 001 d Câu 43 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B 2a C a D a Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B C ln D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = −1 + 2t x = + 2t x = − 2t y = −2 + 3t y = + 3t y = −2 − 3t y = −2 + 3t A B C D z = − 5t z = −4 − 5t z = − 5t z = + 5t Câu 46 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+2b+3c C P = 26abc D P = 2a+b+c Câu 47 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 4a3 C 3a3 D 6a3 A 9a3 Câu 48 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − B R3 C R3 D R3 R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 25 23 29 B C D A 4 4 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001