Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3;−1) Tìm tọa độ điểm M′đối[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; 3; 1) D M ′ (−2; −3; −1) Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 24 (m) B S = 28 (m) C S = 12 (m) D S = 20 (m) Câu 3.√ Cho √hai số thực a, bthỏa mãn√ a > b > Kết luận sau sai? √ √ √ B a < b C ea > eb D a− < b− A a > b √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành? π 10π A V = B V = π C V = D V = 3 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 2m + m+1 m+2 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+1 2m + m+2 m+2 Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 a2 3b2 − a2 A VS ABC = B VS ABC = √ 12 √ 12 3a b 3ab2 C VS ABC = D VS ABC = 12 12 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 Câu Bất đẳng thức sau đúng? π A 3√ < 2π √ e π C ( − 1) < ( − 1) D 4πR3 −e B 3√ > 2−e √ π e D ( + 1) > ( + 1) Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 Câu 10 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 11 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 4m2 − m2 − 12 A B C D m 2m 2m 2m Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(1; 2; 0) C A(0; 0; 3) D A(1; 0; 3) Trang 1/5 Mã đề 001 Câu 13 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D ′ Câu 14 Cho hình trụ có hai đáy hai đường trịn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 15 Biết R5 A T = dx = ln T Giá trị T là: 2x − B T = 81 C T = √ D T = Câu 16 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ 2π.a3 π.a3 4π 2.a3 π 2.a3 A B C D 3 3 Câu 17 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = (−∞; 2) D S = [ 0; +∞) Câu 18 Cho hai số thực a, bthỏa mãn a√> b > Kết luận nào√sau sai? √ √ √5 √ a b − − A e > e B a b D a < b Câu 19 Kết đúng? R sin3 x A sin2 x cos x = − + C R C sin2 x cos x = −cos2 x sin x + C Câu 20 Tính I = B R sin2 x cos x = cos2 x sin x + C D R sin2 x cos x = sin3 x + C R1 √3 7x + 1dx 20 A I = B I = 21 C I = 60 28 D I = 45 28 Câu 21 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu 22 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) p Câu 23 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < y < −3 Câu 24 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C ln x > ln y a a Câu 25 Hàm số sau khơng có cực trị? A y = cos x C y = x2 D log x > log y B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Trang 2/5 Mã đề 001 1 + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) B M = C M = loga x 3loga x Câu 26 Rút gọn biểu thức M = A M = k(k + 1) 2loga x D M = 4k(k + 1) loga x √ Câu 27 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a B C a D A x3 Câu 28 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m ≥ −8 B m < −3 C m ≤ D m ≤ −2 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ C 8π D 4π A 2π B 3π Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −1; 1) B (1; 1; 3) C (1; −2; −3) D (−1; 1; 1) (2 ln x + 3)3 : x ln x + (2 ln x + 3)4 (2 ln x + 3)2 (2 ln x + 3)4 A + C B + C C + C D + C 2 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (−2; 3; 5) C (−2; 2; 6) D (4; −6; 8) Câu 31 Họ nguyên hàm hàm số f (x) = Câu 33 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x + B x3 + − 4x C x3 − x4 + 2x D 2x3 − 4x4 A x3 + 4 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = + 2t x = −1 + 2t x = + 2t y = −2 + 3t y = −2 − 3t y = + 3t y = −2 + 3t A B C D z = + 5t z = − 5t z = −4 − 5t z = − 5t Câu 35 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a 15 a a 15 A B C D 16 r 3x + Câu 36 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−∞; −1] ∪ (1; +∞) C D = (1; +∞) D D = (−1; 4) ———————————————– Câu 37 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080251 đồng D 36080255 đồng Trang 3/5 Mã đề 001 d Câu 38 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a Câu 39 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 40 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Câu 41 Hàm số hàm số sau đồng biến R 4x + B y = −x3 − x2 − 5x A y = x+2 C y = x3 + 3x2 + 6x − D y = x4 + 3x2 Câu 42 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a > a x = ay ⇔ x = y Câu 43 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = C P = ln a D P = 2loga e Câu R44 Chọn mệnh đề mệnh đề sau: R A x dx =5 x + C B sin xdx = cos x + C R R e2x (2x + 1)3 2x C e dx = +C D (2x + 1) dx = + C Câu 45 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x4 + 3x2 4x + C y = D y = x3 + 3x2 + 6x − x+2 Câu 46 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox C m > m < −1 D m > A m > m < − B m < −2 Câu 47 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 Câu 48 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π B C 6π D A 5 Câu 49 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−1; 1) C (−3; 0) D (3; 5) Câu 50 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 25 23 29 A B C D 4 4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001