1. Trang chủ
  2. » Tất cả

Phu luc d

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 69,11 KB

Nội dung

phu luc D pdf 966 Notation A � area x�, y� � distances to centroid C Ix, Iy � moments of inertia with respect to the x and y axes, respectively Ixy � product of inertia with respect to the x and y axe[.]

D Properties of Plane Areas Notation: A  area x苶, y苶  distances to centroid C Ix, Iy  moments of inertia with respect to the x and y axes, respectively Ixy  product of inertia with respect to the x and y axes IP  Ix  Iy  polar moment of inertia with respect to the origin of the x and y axes IBB  moment of inertia with respect to axis B-B y Rectangle (Origin of axes at centroid) A  bh x h C x y bh3 Ix   12 b 苶x  2 h y苶   hb3 Iy   12 Ixy  bh IP   (h2  b2) 12 b y Rectangle (Origin of axes at corner) B bh3 Ix   h O B b2h2 Ixy   bh IP   (h2 + b2) b h3 IBB    6(b2  h2) x b y Triangle (Origin of axes at centroid) c bh A   x h C y b 966 hb3 Iy   x bh3 Ix   36 bc x苶   h y苶   bh Iy   (b2  bc  c2) 36 bh2 Ixy   (b  2c) 72 bh IP   (h2  b2  bc  c2) 36 APPENDIX D y Triangle (Origin of axes at vertex) c B B h O x b y bh3 Ix   12 bh Iy   (3b2  3bc  c2) 12 bh2 Ixy   (3b  2c) 24 bh3 IBB   Isosceles triangle (Origin of axes at centroid) bh A   x h C y B x B b bh3 Ix   36 b x苶   h y苶   hb3 Iy   48 Ixy  bh3 IBB   12 bh IP   (4h2  3b2) 144 (Note: For an equilateral triangle, h  兹3苶 b/2.) y Right triangle (Origin of axes at centroid) bh A   x h C y B x B bh3 Ix   36 b B bh3 Ix   12 h bh3 IBB   12 hb3 Iy   12 bh IP   (h2  b2) 12 x b2h2 Ixy   24 bh3 IBB   b y Trapezoid (Origin of axes at centroid) a h b2h2 Ixy    72 Right triangle (Origin of axes at vertex) B O h 苶y  3 hb3 Iy   36 bh IP   (h2  b2) 36 y b 苶x  3 C B b h(a  b) A   y x h(2a  b)  苶y   3(a  b) h3(a2  4ab  b2) Ix   B 36(a  b) h3(3a  b) IBB   12 Properties of Plane Areas 967 968 APPENDIX D y Properties of Plane Areas Circle (Origin of axes at center) d = 2r pd2 A  pr   r x C B Ixy  B 10 r pr4 pd4 IP     32 5p r 5p d IBB       64 y Semicircle (Origin of axes at centroid) C pr2 A   y B x B y 11 pr pd Ix  Iy     64 4r y苶   3p (9p  64)r Ix   ⬇ 0.1098r4 72p p r4 Iy    Ixy  pr4 IBB    Quarter circle (Origin of axes at center of circle) pr2 A   x B B C y x O 4r x苶  y苶   3p pr4 Ix  Iy    16 (9p  64)r IBB   ⬇ 0.05488r4 144p r4 Ixy   r y 12 Quarter-circular spandrel (Origin of axes at point of tangency) B B r 冢 x 冢 x y 13 C a a y O 冣 冢 冣 p Iy  IBB     r ⬇ 0.1370r4 16 Circular sector (Origin of axes at center of circle) x x (10  3p)r  ⬇ 0.2234r 苶y   3(4  p) 2r  ⬇ 0.7766r 苶x   3(4  p) 5p Ix    r ⬇ 0.01825r 16 y C O 冣 p A    r a  angle in radians A  ar r x (a  p/2) 苶x  r sin a r4 Ix   (a  sin a cos a) 2r sin a y苶    3a r4 Iy   (a  sin a cos a) Ixy  ar IP   APPENDIX D y 14 Circular segment (Origin of axes at center of circle) a  angle in radians C a y Properties of Plane Areas a (a  p/2) sin3 a 2r  苶y  3  a  sin a cos a 冢 A  r 2(a  sin a cos a) r r4 Ix   (a  sin a cos a  sin3 a cos a) x O 冣 Ixy  r4 Iy  (3a  sin a cos a  sin3 a cos a) 12 15 y a Circle with core removed (Origin of axes at center of circle) a  angle in radians r C a a  arccos  r b a x a b (a  p/2) 冢 冢 r4 3ab 2ab3 Ix   3a     r r4 冣 冣 ab A  2r a   r2 b  兹苶 r  a苶2 冢 r4 ab 2ab3 Iy   a     r r4 2a y 16 Ellipse (Origin of axes at centroid) A  pab b C x b a a Ixy  pa b Ix   p ba3 Iy   pab IP   (b2  a2) Circumference ⬇ p[1.5( a  b)  兹a苶b苶 ] ⬇ 4.17b2/a  4a 17 y 冢 x2 y  f (x)  h  2 b x C O (0  b  a/3) Parabolic semisegment (Origin of axes at corner) ertex V y = f (x) h ( a/3  b  a) y b x bh A   16bh3 Ix   105 冣 3b x苶   2hb3 Iy   15 2h y苶   b2h2 Ixy   12 冣 Ixy  969 970 APPENDIX D Properties of Plane Areas y 18 Parabolic spandrel (Origin of axes at vertex) y = f (x) x ertex V hx2 y  f (x)   b2 h y C O bh x A   b 3b x苶   bh3 Ix   21 y 19 冢 xn y  f (x)  h   bn x C x b b2h2 Ixy   12 冣 冣 (n  0) b(n  1)  苶x   2(n  2) hn y苶   2n  2bh3n3 (n  1)(2n  1)(3n  1) hb3n Iy   3(n  3) Ix   y 20 冢 n A  bh  n1 y O hb3 Iy   Semisegment of nth degree (Origin of axes at corner) y = f (x) h 3h  苶y   10 b2h2n2 Ixy   4(n  1)(n  2) Spandrel of nth degree (Origin of axes at point of tangency) hx n y  f (x)   bn y = f (x) x h C y O b(n  1) x苶   n2 bh A   n1 x bh3 Ix   3(3n  1) b 21 4bh A   p C y B b b y hb3 Iy   n3 d = 2r 冢 9p 16 冣 Thin circular ring (Origin of axes at center) Approximate formulas for case when t is small x t 冢 Ixy  p d 3t Ix  Iy  pr 3t   pd 3t IP  2p r 3t   冣 32 Iy    3 hb3 ⬇ 0.2412hb3 p p 8bh3 IBB   9p A  2prt  pdt r C b2 h Ixy   4(n  1) ph y苶   x BIx  8  p bh3 ⬇ 0.08659bh3 Ixy  22 h(n  1) y苶   2(2n  1) Sine wave (Origin of axes at centroid) y h (n  0) APPENDIX D 23 B C b y b b  angle in radians x O Ix  r 3t(b  sin b cos b) 冢 冣 Thin rectangle (Origin of axes at centroid) Approximate formulas for case when t is small A  bt b b C x t B Iy  r 3t(b  sin b cos b) 2b  sin2b  cos2b IBB  r 3t    b Ixy  y (Note: For a semicircular arc, b  p/2.) r sin b 苶y  b A  2brt r 24 971 Thin circular arc (Origin of axes at center of circle) Approximate formulas for case when t is small y t B Properties of Plane Areas tb3 Ix   sin2 b 12 tb3 Iy   cos2 b 12 tb3 IBB   sin2 b B 25 Regular polygon with n sides (Origin of axes at centroid) A B b R1 R2 b C  centroid (at center of polygon) n  number of sides (n  3) b  length of a side b  central angle for a side C a 360° b   n 冢 a  interior angle (or vertex angle) 冣 n2 a   180° n a  b  180° R1  radius of circumscribed circle (line CA) b b R1   csc  2 b b R2   cot  2 R2  radius of inscribed circle (line CB) b nb A   cot  2 Ic  moment of inertia about any axis through C (the centroid C is a principal point and every axis through C is a principal axis) nb4 b b Ic   cot  3cot2   192 2 冢 冣冢 冣 IP  2Ic

Ngày đăng: 02/04/2023, 11:14

w