1. Trang chủ
  2. » Tất cả

Tổng hợp bộ silde giảng dạy toán 8 mới nhất tiết 44

16 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 2,25 MB

Nội dung

Người thực hiện: đào Thị Mai Phương đơn vị công tác: Trường THCS Thị trấn 03/31/23 KIM TRA BI C - Phát biểu định lý trường hợp đồng dạng thứ hai hai tam giác ? Bài tập Cho ABC có: AM, A’M’ ABC  đường trung tuyến hai tam giác Chứng minh rằng: B ABM  ABM A // A’ M // C B’ / M’ / C’ A Giải: ∆ABC Nên B // M B’ AB BM  AB B M   / M’ / C’ ˆ B ˆ vaøB vaø BM   Ma ø BC BM Do đóBM   B2 C  Vaäy :ABM // C ∆A’B’C’ AB BC  :AB B C  BC BM  Suy A’ BC  BC BC  ABM  §7 TRƯỜNG HP ĐỒNG DẠNG 1.Định a a)lý Bài Bài: toán: toán:; THỨ BA  Aˆ  Bˆ Bˆ  Cho hai tam giác ABC vàAˆA’B’C’với ABC ABC  Chứng minh ABC ; A:BC  GT Aˆ  Aˆ  ; Bˆ Bˆ  KL ABC A ABC  A’ B’ C’ M • B • N C Chứng minh: B’ A A’ M • C’ • N B Lấy điểm M tia AB: AM = A’B’ Kẻ MN // BC ( N thuộc => AMN AC ) XétAMN và ABC  có: Aˆ = Aˆ  } C ABC =>∆AMN = ∆ A’B’C’(2) ˆ = Bˆ  (cuøng góc B) M Từ (1) (2) => ∆A’B’C’ ∆ABC AM = A’B’ (1) §7 TRƯỜNG HP ĐỒNG DẠNG THỨ 1.Định lý: BA a) Bài toán: dụng: b)p Định lý: ?1 Trong tam giác đây, cặp tam giác đồng dạng với nhau? Hãygiác giải thích hai Nếu hai góc tam A M D góc tam giác hai tam giác đồng 70˚ dạng40˚với 70˚ / \ B a) \\ // D’ A’ P \\\ N b) F E C /// M’ 70˚ B’ 60˚ d) C’ 60˚ E’ 50˚ e) 65˚ F’ N’ 50˚ P’ c) Đáp án A 40˚ \ 70˚ B / M A’ 70˚ 70˚ D’ /// 70˚ C N 70˚ PMN \\\ 60˚ P C’ B’ }  } ˆcoù ˆ 7O ˆ C 400  B ∆ABC cân A;A ˆ Pˆ 7O ∆PMN cân P;Mcó (g – g) ∆A’B’C’ coùÂ' 700 ; Bˆ  600  Cˆ  500 ∆D’E’F’ coùEˆ  600 ; Fˆ  500 (g – g) 60˚ E’ 50˚ F’  ABC ∆A’B’C’ ∆D’E’F ? Cho bieát AB = 3cm; AC = 4,5cm ABD = B Trong hình vẽ có tam giác? a) A Có cặp tam giác đồng dạng với x không ? D 4,5 y b) Hãy tính độ dài x y (AD= x, DC= B y) C c) Nêếu BD phân giác góc B Hãy tính độ dài đoạnGiải: thẳng BC BD a) Hình vẽ có tam giác là: ∆ABD, ∆BDC, ∆ABC Cặp tam giác đồng dạng với làø ∆ABD vàø ∆ACB  vì: ˆ chung ) ( ABD   ACB; A b) Tính AD, DC (AD = x; DC = y) AB AD AB2 32   x AD   2(cm) ÄABD ÄACB AC AB AC 4,5 y DC AC  AD 4,5 2,5(cm) c) Tính độ dài BC BD: A  ABD BD phân giác góc B DBC neân   (gt ) ABD BCD AC.BD 4,5.2,5  BC   3, 75(cm) AB Do ∆BCD caân => BD= CD = 2,5(cm) AB DB  Theo câu (b) ta AC BC có: x B D 4,5 y C §7 TRƯỜNG Áp dụng: HP ĐỒNG DẠNG THỨ BA Bài 35: SGK/79 CMR: Nếu Ä A’B’C’ đồng dạng ÄABC theo tỷ số k tỷ số hai đường phân giác tươngA ứng A' k ÄA’B’C’ ÄABC (tỷ số k) 12 12 GT AD, A’D’là phân giác góc A, góc A A’' D ' B' D' KL k AD A 'B'C' theo tỉ số k B Giaûi:ABC D  A  '  A ˆ A ; B  B'  Vì A 1 AD AB  ABD A 'B'D'   k A 'D' A 'B' C C' Bài tập trắc nghiệm: Hãy chọn câu trả lời - Cho MNP vuông M đường cao MH Hỏi có cặp tam giác đồng dạng ? M A B C D Có cặp Có cặp Có cặp Không có N P H * HƯỚNG DẪN VỀ NHÀ: •1 Bài vừa học: Bài 36:( SGK/ 79) •- Học thuộc dung thang định lí cách chứng minh ABCD nội hình định ( ABlí.// CD ) •- Xem lại tập giải lớp làm tập  SGK/79 GT baøi ABDAB = 12,5cm; CD = A 12,5 cm B  DBC 36,37 28,5cm X Gợi ý: AB // CD D KL Tính BD =? Kết luận hai góc Khi đó: ABD vàBDC AB BD Lập tỉ số BD DC BD 28,5 cm : C   ABD ? BDC nào? từ tìm * HƯỚNG DẪN VỀ NHÀ: Bài 37/79 Bài vừa học: GT D E AE = 10 cm; AB = 15 cm;   BDC BC = 12 cm;EBA A 15 12 B KL a) Kể tên tam giác vuông? b) Tính CD S ; BE ; BD S; ED ? S c) So Gợi ý sánh BDE a, EBA = BDC => b CM: AEB AEB BCD ABE + CBD = ? CBD => Tính CD, BE,BD? Dùng đ/lí Pi- ta- go tính ED? C c) Để so sánh S BDE S AEB  S BCD ta cần tính: S BDE ?; S AEB ?; S BCD ? D E A 15 12 B C Baøi 39/79  ABCD hình thang ( AB // CD ) GT AC cắt BD O OH,OK vuông góc AB;CD D KL a) OA.OD = OB.OC OH AB b)  OK CD Hướng dẫn : H A B O K OA OB  OAB OCD a OA.OD = OB.OC

Ngày đăng: 31/03/2023, 18:28

w