Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [3-1211h] Cho khối chóp S ABC có cạnh bên a mặt bên hợp với đáy góc 45◦ Tính thể tích khối chóp S ABC√ theo a √ √ a3 a3 a3 15 a3 15 A B C D 25 25 Câu Cho hai đường thẳng phân biệt d d0 đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có B Có hai C Khơng có D Có hai m ln2 x đoạn [1; e3 ] M = n , n, m Câu [3] Biết giá trị lớn hàm số y = x e số tự nhiên Tính S = m2 + 2n3 A S = 22 B S = 135 C S = 24 D S = 32 Câu Z Các khẳng định Z sau sai? k f (x)dx = k Z !0 f (x)dx, k số B f (x)dx = f (x) Z Z Z C f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C ! − 12x Câu [2] Phương trình log x log2 = có nghiệm thực? 12x − A B Vô nghiệm C D A Z Câu Cho hình chóp S ABC Gọi M trung điểm S A Mặt phẳng BMC chia hình chóp S ABC thành A Hai hình chóp tứ giác B Hai hình chóp tam giác C Một hình chóp tam giác hình chóp tứ giác D Một hình chóp tứ giác hình chóp ngũ giác π x Câu [2-c] Giá trị lớn hàm số y = e cos x đoạn 0; √ √ π3 π4 π6 A e e e B C D 2 d = 60◦ Đường chéo Câu Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vng A, AC = a, ACB 0 0 ◦ BC mặt bên (BCC B ) tạo với mặt phẳng (AA C C) góc 30 Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 2a3 a3 4a3 A a B C D 3 Câu Khối đa diện loại {3; 3} có số đỉnh A B C D Câu 10 Bát diện thuộc loại A {3; 3} B {5; 3} C {3; 4} D {4; 3} Câu 11 Giá trị lim (3x − 2x + 1) x→1 A B +∞ C D 2 Câu 12 Thập nhị diện (12 mặt đều) thuộc loại A {3; 4} B {3; 3} C {5; 3} D {4; 3} Trang 1/5 Mã đề Câu 13 [1-c] Giá trị biểu thức log2 36 − log2 144 A B C −4 D −2 Câu 14 [2] Cho hàm số f (x) = x x Giá trị f (0) D f (0) = ln 10 ln 10 √ Câu 15 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ cho √ √ πa3 πa3 πa3 πa3 A V = B V = C V = D V = 6 Câu 16 Giá trị cực đại hàm số y = x3 − 3x + A B C D −1 A f (0) = 10 B f (0) = C f (0) = Câu 17 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a Khi thể tích khối lăng trụ BC √ √ √ √ a3 a3 a3 a3 A B C D 36 12 24 √ Câu 18 [1] Biết log6 a = log6 a A 108 B 36 C D Câu 19 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt d = 30◦ , biết S BC tam giác Câu 20 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 13 26 Câu 21 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, √biết S H ⊥ (ABCD) Thể √ tích khối chóp S ABCD 3 4a 2a a3 a3 A B C D 3 Câu 22 Biểu diễn hình học số phức z = + 8i điểm điểm sau đây? A A(4; 8) B A(−4; −8)( C A(−4; 8) D A(4; −8) Câu 23 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C D a A 2a Câu 24 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng x+1 y−5 z d: = = Tìm véctơ phương ~u đường thẳng ∆ qua M, vng góc với đường thẳng 2 −1 d đồng thời cách A khoảng bé A ~u = (2; 2; −1) B ~u = (3; 4; −4) C ~u = (2; 1; 6) D ~u = (1; 0; 2) mx − Câu 25 Tìm m để hàm số y = đạt giá trị lớn [−2; 6] x+m A 26 B 34 C 67 D 45 √ Câu 26 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập " đây? ! 5 A ;3 B (1; 2) C 2; D [3; 4) 2 Trang 2/5 Mã đề Câu 27 Khối chóp ngũ giác có số cạnh A 10 cạnh B 12 cạnh C 11 cạnh D cạnh Câu 28 Vận tốc chuyển động máy bay v(t) = 6t2 + 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ đến giây thứ 15 bao nhiêu? A 2400 m B 1202 m C 6510 m D 1134 m Câu 29 [3-12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm x2 − 12x + 35 x→5 25 − 5x 2 A +∞ B − C −∞ D 5 √ x Câu 31 [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 64 C 63 D 62 Câu 30 Tính lim Câu 32 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m = B m > C m , D m < Câu 33 [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√ + 1)2 x [0; 1] A m = ±3 B m = ± C m = ± D m = ±1 x−1 y z+1 Câu 34 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình = = −1 mặt phẳng (P) : 2x − y + 2z − = Viết phương trình mặt phẳng (Q) chứa ∆ tạo với (P) góc nhỏ A 2x + y − z = B −x + 6y + 4z + = C 10x − 7y + 13z + = D 2x − y + 2z − = Câu 35 [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung hai x+1 y−4 z−4 x−2 y−3 z+4 = = d0 : = = đường thẳng d : −5 −2 −1 x−2 y+2 z−3 x y−2 z−3 A = = B = = 2 2 −1 x y z−1 x−2 y−2 z−3 = = D = = C 1 Câu 36 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D Câu 37 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −6 B C D −3 Câu 38 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận tháng người phải trả cho ngân hàng triệu đồng trả tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 24 B 21 C 22 D 23 Z Câu 39 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ Tính f (x)dx 3x + A B −1 C D Câu 40 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất khơng thay đổi người khơng rút tiền ra? A 10 năm B 11 năm C 14 năm D 12 năm Trang 3/5 Mã đề Câu 41 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −1 B m = −3 C m = D m = −2 Câu 42 [3-12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 43 [2] Đạo hàm hàm số y = x ln x A y0 = x + ln x B y0 = ln x − C y0 = − ln x D y0 = + ln x Câu 44 [2] Tập xác định hàm số y = (x − 1) A D = (−∞; 1) B D = R \ {1} C D = (1; +∞) D D = R Câu 45 Dãy số có giới hạn 0? n3 − 3n A un = B un = n2 − 4n n+1 !n D un = !n −2 C un = Câu 46 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 A B C D 12 12 [ = 60◦ , S A ⊥ (ABCD) Câu 47 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh √ S C a Thể tích khối chóp S ABCD √ 3 √ a a a3 A B C a D 12 x−1 có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét Câu 48 [3-1214d] Cho hàm số y = x+2 tam giác ABI có hai đỉnh A, √ B thuộc (C), đoạn thẳng √ AB có độ dài √ A B 2 C D Câu 49 Khối đa diện loại {3; 5} có số mặt A B 12 C 20 D 30 Trong khẳng định sau đây, khẳng định đúng? Câu 50 [3-12217d] Cho hàm số y = ln x+1 y y A xy = −e − B xy = −e + C xy0 = ey + D xy0 = ey − - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D C B B C B A A 10 C C 11 D 12 13 D 14 15 D 16 C 18 C 19 A 20 C 21 A 22 A 17 B 23 25 24 C B D 26 A 27 A 29 D 28 C 30 B D 31 D 32 C 33 D 34 C 35 D 36 A 37 D 38 39 D 40 41 D 42 43 D 44 45 47 49 46 C D C C B D C B 48 D 50 D ... xy0 = ey + D xy0 = ey − - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D C B B C B A A 10 C C 11 D 12 13 D 14 15 D 16 C 18 C 19 A 20 C 21... tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 10 năm B 11 năm C 14 năm D 12 năm Trang 3/5 Mã đề Câu 41 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt... bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 13 26 Câu 21 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung