Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
464 KB
Nội dung
GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO I-ĐẶT VẤN ĐỀ 1. Trong chương trình phổ thông, chúng ta được học bốn phương pháp giải toán hình: 1. Hình học tiên đề (được học ở THCS, lớp 11 và 12) 2. Hình học véc tơ 3. Hình học giải tích 4. Phép biến hình Trong bốn phương pháp trên thì phép biến hình chủ yếu dùng để giải các bài toán về dựng hình, bài toán quỹ tích và bài toán chứng minh các tính chất hình học khó, đặc biệt là phépnghịchđảo có ứng dụng quan trọng trong việc giải quyết ba dạng bài trên. 2.Tuy nhiên phépnghịchđảo không được dạy trong chương trình phổ thông, chỉ dùng cho học sinh giỏi và học sinh chuyên toán . Vì lý do trên nên tôi trình bày các tính chất và ứng dụng thường gặp đối với các dạng toán dựng hình, quỹ tích và tính chất hình học khó, các bài toán trong các đề thi học sinh giỏi và vận dụng để chứng minh các định lý hình học. II-GIẢI QUYẾT VẤN ĐỀ A- LÝ THUYẾT 1.1.Định nghĩa (phép nghịchđảo trong mặt phẳng). Cho điểm O và số thực k ≠ 0 .Với mỗi điểm M trong mặt phẳng, M khác điểm O, ta tìm được điểm M’ trên đường thẳng OM sao cho . 'OM OM k= . Gọi là phépnghịchđảo cực O , phương tích k .Ta ký hiệu là f(O, k). f : mp → mp M a M’ sao cho . 'OM OM k= . M’ gọi là ảnh của M qua f(O, k) .Ký hiệu là f(M) = M’. 1.2. Tính chất a) Phépnghịchđảo có tính chất đối hợp nghĩa là f(M) = M’ thì f(M’) = M vì . 'OM OM k= = '.OM OM b) Nếu k > 0 thì hai điểm M, M’ nằm cùng phía với O . Đường tròn (O; k ) gọi là đường tròn nghịch đảo, mọi điểm thuộc đường tròn nghịchđảo đều là điểm kép tức là f(M) = M. Hơn nữa tập hợp các điểm kép này là đường tròn (O; k ) . Nếu k < 0 thì hai điểm M, M’ nằm về hai phía đối với O . Trường hợp này không có điểm kép đối với f(O; k), đường tròn (O; k ) gọi là đường tròn ảo. Khi đó M→ O thì M’→ ∞ c) Phépnghịchđảo f(O; k) với k > 0, f : M a M’ thì mọi đường tròn đi qua M, M’ đều trực giao nhau. GV: Lại Văn Long Trường THPT Lê Hoàn Trang 1 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO d) Nếu hai đường tròn (O 1 ) và (O 2 ) lần lượt trực giao với (O; k ) ( k > 0) và (O 1 ) , (O 2 ) cắt nhau tại hai điểm thì hai điểm này là ảnh của nhau qua phépnghịchđảo f(O; k ). e) Cho phépnghịchđảo f(O; k). Khi đó với hai điểm A, B không thẳng hàng với cực nghịchđảo và f(A) = A’ ; f(B) = B’ thì 4 điểm A, A’, B, B’ cùng thuộc một đường tròn. f) Phépnghịchđảo f(O; k) : A a A’ B a B’ thì A’B’ = . AB k OA OB CÁCH XÁC ĐỊNH ẢNH CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN QUA PHÉPNGHỊCH ĐẢO. 1.Định lý 1. Cho đường thẳng d và phépnghịchđảo f(O; k). Khi đó nếu d đi qua cực O thì f(d) = d . Nếu d không đi qua O thì f(O; k) biến d thành đường tròn đi qua cực O. 2. Định lý 2. Cho đường tròn (C) và phépnghịchđảo f(O; k). Khi đó nếu (C) đi qua cực O thì f(O; k) biến (C) thành đường thẳng . Nếu (C) không đi qua O thì f(O; k) biến (C) thành đường tròn (C’) không đi qua O. 3. Định lý 3. Một đường thẳng và một đường tròn có thể coi là ảnh của nhau trong hai phépnghịch đảo, nếu đường thẳng không tiếp xúc với đường tròn. 4. Định lý 4. Phépnghịchđảo bảo toàn góc giữa hai đường tròn ( hay góc giữa đường tròn và đường thẳng, hay góc giữa hai đường thẳng ). (Định nghĩa góc giữa hai đường cong: hai đường cong (C 1 ) và (C 2 ) cắt nhau.Tại một điểm chung A ta dựng các tiếp tuyến với hai đường cong. Khi đó góc giữa hai đường cong là góc giữa hai tiếp tuyến tại A.) 5. Định lý 5. Tích hai phépnghịchđảo cùng cực O : f(O; k) và f’(O; k’) là phép vị tự tâm O, tỉ số 'k k . Ký hiệu 'f fo . f(O;k) f'(O;k') M M' M"→ → 'f fo =V(O; 'k k ) PHÉPNGHỊCHĐẢO TRONG HỆ TỌA ĐỘ ĐỀ-CÁC. GV: Lại Văn Long Trường THPT Lê Hoàn Trang 2 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO Cho f(O; k) trong đó O(0; 0) và M(x; y) ; M’(x’; y’) là ảnh của M qua phépnghịchđảo f(O; k), khi đó . 'OM OM k= ⇔ . 'OM OM k= uuuur uuuuur ⇔ x.x’ + y.y’ = k và M’ ∈ OM công thức xác định tọa độ M’. ( Ta sẽ nghiên cứu phần sau). B- ỨNG DỤNG DẠNG 1. Chứng minh các tính chất hình học. Bài 1. Cho tam giác đều ABC và điểm O bất kỳ . Chứng minh rằng tổng của hai trong ba đoạn OA, OB, OC không nhỏ hơn đoạn còn lại. Hướng dẫn: TH1: O không nằm trên cạnh nào của tam giác ABC. Gọi A’, B’, C’ là ảnh của A, B, C qua f(O; k), khi đó có : ' ' , ' ' , ' ' . . . k k k A B AB A C AC B C BC OA OB OA OC OB OC = = = . Ta có A’B’ + B’C’ ≥ A’C’ . ⇒ . k AB OA OB + . k B C OB OC ≥ . k AC OA OC ⇔ OA.BC + OC.AB ≥ OB.AC. ⇔ OA + OC ≥ OB (vì ∆ ABC đều). Dấu “=” khi A’B’ + B’C’ = A’C’ hay O nằm trên đường tròn ngoại tiếp ∆ ABC. TH2 : O nằm trên 1 cạnh của ∆ ABC, giả sử là cạnh AB. +) Nếu O nằm trong đoạn AB : OA + OB = AB = AC ≥ OC (vì · · 0 60AOC OAC≥ = ) Trường hợp khác luôn đúng. +) Nếu O nằm ngoài đoạn AB làm tương tự có đpcm. Bài 2. Chứng minh rằng tứ giác lồi ABCD nội tiếp trong một đường tròn khi và chỉ khi AC.BD = AB.CD + AD.BC ( Định lý Ptôlêmê). Hướng dẫn: Xét f(D; k), gọi A’, B’, C’ là ảnh của A, B, C qua phépnghịchđảo f(D; k) . Tứ giác ABCD nội tiếp khi và chỉ khi A’, B’, C’ thẳng hàng. GV: Lại Văn Long Trường THPT Lê Hoàn Trang 3 Hình 1 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO A’, B’, C’ thẳng hàng khi A’C’ = A’B’ + B’C’ (hình 2). ⇔ k k k AC AB + BC DA.DC DA.DB DB.DC = . ⇔ AC.BD = AB.CD + AD.BC (đpcm). Hình 2 Bài 3. Chứng minh rằng khoảng cách d giữa tâm đường tròn nội tiếp và tâm đường tròn ngoại tiếp của cùng một tam giác ABC thỏa mãn hệ thức : 2 2 2d R Rr= − ( R và r : là bán kính đường tròn ngoại tiếp và nội tiếp ABC∆ ). Hướng dẫn: Gọi P là tâm đường tròn nội tiếp ABC∆ , M, N, E là tiếp điểm (hình 3). Xét phépnghịchđảo f(P ; r 2 ): Gọi A’, B’, C’ là giao điểm của AP với MN BP với ME, PC với NE. Khi đó: A’, B’, C’ là ảnh của A, B, C qua phépnghịchđảo f(P ; r 2 ). Ta lại có A’, B’, C’ là trung điểm MN, ME, NE. ' ' 'A B C∆ nội tiếp đường tròn bán kính 2 r . Ta có ' ' 'A B C∆ là ảnh của ABC∆ qua phép vị tự tâm P tỉ số 2 2 2 r d R− với d là khoảng cách từ P đến tâm đường tròn ngoại tiếp ABC∆ . Hình 3 GV: Lại Văn Long Trường THPT Lê Hoàn Trang 4 GV: Lại Văn Long CHUYÊN ĐỀ PHÉP NGHỊCH ĐẢO 2 2 2 2 r r R d R ⇒ = − ⇔ d 2 = R 2 – rR (đpcm). DẠNG 2. Dựng hình Bài 1. Cho hai đường tròn (O 1 ) và (O 2 ) cắt nhau tại hai điểm A, B. Trên đường thẳng AB lấy điểm C nằm ngoài hai đường tròn. Hãy dựng đường tròn (O) qua C và đồng thời tiếp xúc (O 1 ) và (O 2 ) . Hướng dẫn: Phân tích . Gọi (O) là đường tròn cần dựng( hình 4). Xét phépnghịchđảo f(C;k): với k = .CA CB , khi đó f biến (O 1 ) và (O 2 ) thành chính nó, biến (O) thành đường thẳng (d) tiếp xúc với (O 1 ) và (O 2 ). Cách dựng: Kẻ đường thẳng (d) là tiếp tuyến chung của (O 1 ) và (O 2 ). Xét phépnghịchđảo f(C; k) với k = .CA CB , khi đó f(d) = (O) cần tìm. Chứng minh: f(C; k) với k = .CA CB biến (O 1 ) và (O 2 ) thành chính nó, f biến d thành đường tròn (O) qua C, do d tiếp xúc (O 1 ) và (O 2 ) nên (O) tiếp xúc (O 1 ) và (O 2 ) . Biện luận : Hình 4 (O 1 ) và (O 2 ) cắt nhau nên có 2 tiếp tuyến . Vậy bài toán có hai nghiệm. Bài 2. Cho hai đường tròn (O 1 ) và (O 2 ) tiếp xúc ngoài nhau và đường thẳng d tiếp xúc với (O 1 ) và (O 2 ). Dựng đường tròn (O) tiếp xúc với (O 1 ) và (O 2 ) và tiếp xúc d. Hướng dẫn: Phân tích: Gọi (O) là đường tròn cần dựng . A, B là tiếp điểm của d và (O 1 ) và (O 2 ) ( hình 5). Xét phépnghịchđảo f(A; k) với k = AB 2 . Khi đó f(A; k) biến (O 2 ) thành chính nó, biến d thành d , biến (O 1 ) thành d 1 // d và tiếp xúc với (O 2 ), f(A; k) biến (O) thành (O’) tiếp xúc với d, d 1 và (O 2 ). Cách dựng: GV: Lại Văn Long Trường THPT Lê Hoàn Trang 5 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO Xét phépnghịchđảo f(A; k) với k = AB 2 , gọi d 1 là ảnh của (O 1 ), dựng đường tròn (O’) tiếp xúc d, d 1 và (O 2 ) . Khi đó đường tròn (O) là ảnh của (O’) qua f(A; k) . Chứng minh : Phépnghịchđảo f(A; k) với k = AB 2 biến (O’) thành (O). Do (O’) tiếp xúc với d, d 1 và (O 2 ) nên (O) tiếp xúc với (O 1 ), (O 2 ) và d. Biện luận : Nếu A, B phân biệt (hình 5) thì có 2 đường thẳng d như thế, do đó có hai đường tròn(O) cần tìm. Nếu A và B trùng nhau thì bài toán có vô số nghiệm. Hình 5 Bài 3. Cho đường tròn tâm O đường kính AB . Đường thẳng d tiếp xúc với đường tròn tại A, M là một điểm thuộc đường tròn. Dựng đường tròn tâm I tiếp xúc với đường tròn (O) tại M và tiếp xúc với đường thẳng d . Hướng dẫn: Phân tích : Giả sử dựng được đường tròn (I). Xét phépnghịchđảo f(A; k) với k = AB 2 , khi đó ảnh của (O) là đường thẳng d 1 tiếp xúc (O) tại B. f(M) = M’ ' 1 M d⇒ ∈ . Khi đó ảnh của (I) là đường tròn (I’) tiếp xúc d 1 tại M’ và tiếp xúc d (hình 6). Cách dựng : Dựng d 1 là ảnh của (O) qua phépnghịchđảo f(A; k) với k = AB 2 , M’ là ảnh của M qua f(A; k) . Dựng (I’) tiếp xúc d 1 tại M’ và tiếp xúc với d, khi đó (I) là ảnh của (I’) qua f(A; k). Chứng minh: Do (I’) tiếp xúc với d 1 tại M’ nên (I) tiếp xúc (O) tại M. Lại có (I’) tiếp xúc với d nên (I) tiếp xúc với d. Biện luận: Do có một đường tròn (I’) nên bài toán có một nghiệm. Hình 6 GV: Lại Văn Long Trường THPT Lê Hoàn Trang 6 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO DẠNG 3: Tính các đại lượng hình học Bài 1. Cho đường tròn (I; r) nội tiếp trong tứ giác ABCD, gọi M, N, P, Q là tiếp điểm của (O;r) với AB, BC, CD, DA. Tứ giác ABCD nội tiếp đường tròn (O; R), gọi a là khoảng cách giữa hai tâm của hai đường tròn. Tính tổng MP 2 + NQ 2 . Hướng dẫn: Xét phépnghịchđảo f(I; r 2 ) : : 1 1 1 1 f A A B B C C D D → → → → A 1 , B 1 , C 1 , D 1 là các điểm xác định trên (hình 7) Có A 1 , B 1 , C 1 , D 1 là trung điểm của MQ, MN, NP PQ ⇒ tứ giác A 1 B 1 C 1 D 1 là hình bình hành. Do tứ giác ABCD nội tiếp ⇒ tứ giác A 1 B 1 C 1 D 1 cũng nội tiếp ⇒ hình bình hành A 1 B 1 C 1 D 1 là hình chữ nhật . A 1 B 1 C 1 D 1 nội tiếp đường tròn bán kính Hình 7 R’ = 2 2 . . 2 2 2 2 R r R r R IO R a = − − 2R’ = A 1 C 1 = 1 1 1 1 1 2 2 2 2 2 A B B C MP NQ+ = + 2 . 2 2 2 2 2 16 ' 16. 2 2 R r R MP NQ MP NQ R a ⇔ = + ⇔ + = − . Bài 2. Cho đường tròn (I; R) và điểm O ∉ (I; R), khi đó phépnghịchđảo f(O; k) biến (I; R) thành (I’; R’) . Tính R’. Hướng dẫn: Gọi A, B là giao điểm của OI với (I; R)(hình 8). Gọi A’, B’ là ảnh của A, B qua phépnghịchđảo f(O; k). Khi đó . 2 . . ' ' 2 ' ' 2 2 . . AB k R k R k A B R R OA OB OA OB R IO = ⇔ = ⇔ = − GV: Lại Văn Long Trường THPT Lê Hoàn Trang 7 Hình 8 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO Bài 3. Cho đường tròn (O; R) và đường thẳng d tạo với (O; R) một góc α . Gọi (O’) là ảnh của d qua phépnghịchđảo f(O; R 2 ). a) Tính bán kính của đường tròn (O’) theo R và α . b) Chứng minh rằng hai đường tròn (O) và (O’) có tiếp tuyến chung. Tính độ dài tiếp tuyến chung đó.( độ dài đoạn thẳng nối hai tiếp điểm). Hướng dẫn: a) (O’) là ảnh của d qua f(O; R 2 ) (hình 9) (xác định ảnh của 3 điểm trên d). Do tính chất bảo toàn góc nên góc giũa (O) và (O’) bằng α nên R’ = 2cos R α . do d cắt (O) mà ảnh của d là (O’) ảnh của (O) là (O) nên (O’) cắt (O) ⇒ hai đường tròn có tiếp tuyến chung. Áp dụng tính chất tiếp tuyến chung của hai đường tròn nên khoảng cách giữa hai tiếp điểm của tiếp Hình 9 tuyến chung : R. 1 os os c c α α − . DẠNG 4: Tập hợp điểm. Bài 1. Cho đường tròn tâm O và dây cung AB cố định của (O). Điểm M di động trên (O), qua M dựng đường tròn (O 1 ) tiếp xúc AB tại A. Đường tròn (O 2 ) qua M và tiếp xúc AB tại B. Gọi M’ là giao điểm thứ hai của (O 1 ) và (O 2 ). Tìm tập hợp M’ khi M thay đổi. Hướng dẫn: Có MM’ là trục đẳng phương của (O 1 ) và (O 2 ). Gọi I là trung điểm của AB nên I ∈ MM’, có 2 2 . 'IM IM IA IB= = (hình 10) . Xét phépnghịchđảo f(I; IA 2 ) nên M’ là ảnh của M qua f(I; IA 2 ) . Gọi (O’) là ảnh của (O) qua f(I; k) với k = IA 2 . Do ( ) ' ( ')M O M O∈ ⇒ ∈ . Vậy tập hợp M’ là đường tròn (O’) . Cách xác định (O’) Xét OAH∆ vuông tại A (hình 10). Đường tròn (O’) cũng là ảnh của (O) qua phép vị tự tâm I tỉ số 1 . k IA IB =− nên O’ đối xứng O qua AB Hình 10 GV: Lại Văn Long Trường THPT Lê Hoàn Trang 8 α GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO Bài 2 . Cho ba điểm A, B, C thẳng hàng, d là đường trung trực của AB. Đường tròn (O) thay đổi qua A, B cắt d tại D và E, các đường thẳng CD và CE cắt đường tròn tại D’ và E’. Tìm tập hợp điểm D’ và E’. Hướng dẫn : Xét phépnghịchđảo f(C; k) với k = .CA CB . Khi đó f(D) = D’ và f(E) = E’ (hình 11). Gọi (I) là ảnh của d qua f(C; k) . Do D, E nằm trên d nên D’, E’ nằm trên (I). Vậy tập hợp D’, E’ nằm trên (I). Cách xác định (I) : d AB⊥ tại H ⇒ H là trung điểm của AB Vậy H là điểm cố định ⇒ f(H) =I . Khi đó . .CI CH CA CB= . Hình 11 Bài 3. Cho hai đường tròn (O; R), (O’; R’) với (R > R’) và nằm ngoài nhau. Trên đường tròn (O), lấy điểm M. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O’). Với A, B là tiếp điểm . Gọi H là giao điểm của AB và MO’. Tìm tập hợp H khi M thay đổi trên (O). Hướng dẫn: Xét phépnghịchđảo f(O’; R’ 2 ), khi đó f(M) = H. Thật vậy có 2 2 ' . ' ' 'O H O M O A R= = . Gọi (O 1 ) là ảnh của (O) qua f(O’; R’ 2 ) ⇒ H ( ) 1 O∈ (hình 12). Vậy tập hợp điểm H là đường tròn (O 1 ). Hình 12 Bài 4: Cho (O) và điểm S nằm ngoài (O). Hai cát tuyến lưu động của S lần lượt cẳt (O) tại A, A’ và B, B’. Gọi M giao điểm thứ hai của (SAB’) và (SBA’). Tìm quỹ tích điểm M. GV: Lại Văn Long Trường THPT Lê Hoàn Trang 9 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO Hướng dẫn: 2 2 . ' . 'SA SA SB SB SO R k== = − . Xét phépnghịchđảo f(S; k) : f : ' ' ( ) ( ) ( ') ' ( ' ) ' A A B B O O SAB A B SA B AB → → → → → Gọi M’ là giao điểm A’B và AB’ (hình 13). Khi đó f(M) = M’ hay f(M’) = M . Hình 13 Vậy M là ảnh của M’ qua f(S; k). Bài 5. Cho đường tròn (O; R), điểm M cố định không trùng với O và không nằm trên (O). Đường thẳng d qua M cắt (O) tại A, B. Gọi C là giao điểm của hai tiếp tuyến tại A, B. Tìm tập hợp điểm C khi d biến thiên. Hướng dẫn: Gọi H là giao điểm của OC và AB (hình 14). Ta có 2 .OH OC R= . Xét phépnghịchđảo f(O; R 2 ): f(H) = C. Vì H thuộc đường tròn đường kính OM mà ảnh của (OHM) qua f(O; R 2 ) là đường thẳng d nên C nằm trên d. Gọi H 1 và H 2 là giao điểm của (O) và ( OMH). M’ là ảnh của M qua f(O; R 2 ) ⇒ OM.OM’ = R 2 +) Nếu OM < R thì OM’ > R thì d và (O) không có điểm chung, lúc đó tập hợp C là cả đường thẳng d. +) Nếu OM > R thì OM’ < R thì d cắt (O) tại H 1 và H 2 Khi đó tập hợp C là đường thẳng d, bỏ đoạn H 1 H 2 . Hình 14 C- BIỂU THỨC TỌA ĐỘ CỦA PHÉPNGHỊCH ĐẢO. 1. Ảnh của một điểm. Cho hệ trục Oxy M(x; y), O(0; 0), phépnghịchđảo f(O; k): f(M) = M’(x’ ;y’) . ' . 'OM OM k OM OM k⇒ = ⇔ = uuuur uuuuur . ' . ' (1)x x y y k⇔ + = Lại có O, M, M’ thẳng hàng nên ' (2) ' x x y y λ λ = = . GV: Lại Văn Long Trường THPT Lê Hoàn Trang 10 [...]... 2c Kết luận: +) Nếu d đi qua cực của phépnghịchđảo thì ảnh của d là chính nó +) Nếu d không đi qua cực của phépnghịchđảo thì ảnh của d là đường tròn qua cực nghịchđảo 3 Ảnh của đường tròn qua phépnghịchđảo Trong hệ trục Oxy, cho đường tròn (C) : x 2 + y2 +2ax + 2by + c = 0 và phépnghịchđảo f(O; k) với O(0; 0) và k ≠ 0 Xác định ảnh của (C) qua phépnghịchđảo f(O; k) Lấy M(x; y) bất kỳ thuộc... CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO k Từ (1) và (2) ⇒ λ = 2 2 x +y k.x x' = 2 x + y2 ⇒ y ' = k.y x 2 + y2 (k ≠ 0, x 2 + y 2 ≠ 0) 2 Ảnh của đường thẳng qua phépnghịchđảo Trong hệ trục Oxy cho đường thẳng d: ax + by + c = 0 và phépnghịchđảo f(O; k) Với O(0; 0) Gọi d’ là ảnh của d qua phépnghịchđảo f(O; k) Viết phương trình d’ Lấy M(x; y) bất kỳ thuộc d Gọi f(M) = M’(x’; y’), do phépnghịchđảo có... thẳng hàng HD: Xét phépnghịchđảo f(C; CH2) III: KẾT LUẬN Phần trình bày trên đây đã giúp chúng ta định hướng phương pháp giải toán bằng phépnghịchđảo Tuy nhiên khi gặp những bài toán này học sinh cần phân tích đặc điểm của bài toán ? Xác định cực nghịchđảo và phương tích ? Học sinh cần củng cố cho mình những kiến thức về phépnghịch đảo, đặc biệt là các tính chất của phépnghịchđảo mà từ đó vận... Ảnh của một đường tròn đi qua cực nghịchđảo là một đường thẳng b) Ảnh của một đường tròn không đi qua cực nghịchđảo là một đường tròn không qua cực nghịchđảo Chú ý: +) Từ cách xác định ảnh của đường tròn ở trên ta thấy ảnh của đường tròn qua phép k nghịchđảo f(O; k) và phép vị tự V(O; p ) là trùng nhau, trong đó p là phương tích của O đến đường tròn +) Phép nghịchđảo biến đường tròn thành đường... đường tròn trên HD: Xét phépnghịchđảo f(A; k) với k = AB.AC GV: Lại Văn Long Trường THPT Lê Hoàn Trang 13 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO Bài 8: Cho đường tròn (O) và điểm A nằm ở ngoài đường tròn Một tiếp tuyến thay đổi vẽ từ A của (O) cắt hai tiếp tuyến của (O) tại B, C Chứng minh rằng đường tròn (ABC) tiếp xúc với một đường tròn cố định HD: Xét phép nghịchđảo f(O; R2), trong đó R... định HD: Xét phép nghịchđảo f(A; AB2) Bài 5: Cho tam giác ABC và các đường cao BH, CK Chứng minh rằng HK song song với tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC HD: Xét phépnghịchđảo f(A; k) với k = AK.AB Bài 6 : Cho hai điểm A, B trên đường thẳng d Hai đường tròn (O) và (O’) lần lượt tiếp xúc d tại A, B và trực giao nhau tại M, N Tìm quỹ tích M và N HD: Xét phépnghịchđảo f(A; AB2)... Xét phépnghịchđảo f(M; k) với k = MA.MA ' GV: Lại Văn Long Trường THPT Lê Hoàn Trang 12 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO Bài 2: Cho đường tròn (O), đường kính BC Một điểm A nằm ngoài đường tròn Gọi B’, C’ lần lượt là giao điểm của AC, AB với (O) Gọi H là giao điểm của BB’ và CC’ Gọi M, N lần lượt là tiếp điểm của hai tiếp tuyến qua A đến (O) Chứng minh rằng: H, M, N thẳng hàng HD: Xét phép. .. Trang 11 GV: Lại Văn Long CHUYÊN ĐỀ PHÉPNGHỊCHĐẢO k.x ' x = 2 x' + y' 2 k.x ' k.y ' ⇒ M( 2 ; 2 ) ∈ (C) x ' + y' 2 x ' + y' 2 k.y ' y = x' 2 + y' 2 k2x' 2 k 2y' 2 2ak x ' 2bk y ' + + + +c = 0 ( x ' 2 + y ' 2 )2 ( x ' 2 + y ' 2 )2 ( x ' 2 + y ' 2 ) ( x ' 2 + y ' 2 ) ⇔ c( x ' 2 + y ' 2 ) + 2kax ' + 2kby ' + k 2 = 0 ⇔ Gọi (C’) là ảnh của (C) qua phépnghịchđảo f(O; k) M ∈ (C) ⇔ M ' ∈ (C ')... Các đường tròn (PAD) và (PBC) cắt nhau tại điểm thứ hai là M, các đường tròn (PAC) và (PBD) cắt nhau tại điểm thứ hai là N a) Tìm quỹ tích M, N b) Chứng minh rằng MN đi qua điểm cố định HD: Xét phépnghịchđảo f(P; k) với k là phương tích của P với (O; R) Bài 10: Cho đường tròn (O ), đường kính AB C là một điểm thay đổi trên đường tròn (O) sao cho tam giác ABC không cân tại C Gọi H là chân đường cao... thẳng XY cắt BC tại Z Cho P là một điểm trên đường thẳng XY khác Z Đường thẳng CP cắt đường tròn (AC) tại M và đường thẳng BP cắt đường tròn (BD) tại N Chứng minh rằng AM, DN, XY đồng quy HD: Xét phépnghịchđảo f(P; k) với k = PC.PM Bài 4: Cho đường tròn (O), đường kính AB Điểm I nằm trên đoạn AB (khác A, B) Một đường thẳng d thay đổi qua I cắt (O) tại P, Q ( d không trùng với AB) Đường thẳng AP, AQ . cực của phép nghịch đảo thì ảnh của d là chính nó. +) Nếu d không đi qua cực của phép nghịch đảo thì ảnh của d là đường tròn qua cực nghịch đảo. 3. Ảnh của đường tròn qua phép nghịch đảo. Trong. = 0 và phép nghịch đảo f(O; k). Với O(0; 0). Gọi d’ là ảnh của d qua phép nghịch đảo f(O; k). Viết phương trình d’. Lấy M(x; y) bất kỳ thuộc d . Gọi f(M) = M’(x’; y’), do phép nghịch đảo có tính. tròn. f) Phép nghịch đảo f(O; k) : A a A’ B a B’ thì A’B’ = . AB k OA OB CÁCH XÁC ĐỊNH ẢNH CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN QUA PHÉP NGHỊCH ĐẢO. 1.Định lý 1. Cho đường thẳng d và phép nghịch đảo f(O;