1. Trang chủ
  2. » Tất cả

Ôn tập môn toán thpt (620)

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 120,13 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hình chóp S ABCD có đáy ABCD hình vng biết S A ⊥ (ABCD), S C = a S C hợp với đáy một√góc 60◦ Thể tích khối √ √ √ chóp S ABCD 3 a a a3 a3 A B C D 24 48 16 48 Câu [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép ổn định tháng lĩnh 61.758.000 Hỏi lãi suất ngân hàng tháng bao nhiêu? Biết lãi suất không thay đổi thời gian gửi A 0, 6% B 0, 7% C 0, 8% D 0, 5% Câu Tính giới hạn lim x→2 A −1 x2 − 5x + x−2 B Câu Hàm số sau khơng có cực trị A y = x3 − 3x B y = x + x x+2 bằng? Câu Tính lim x→2 x A B C C y = D x−2 2x + D y = x4 − 2x + C D Câu [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ ! − 12x = có nghiệm thực? Câu [2] Phương trình log x log2 12x − A B C D Vơ nghiệm x+2 Câu Có giá trị nguyên tham số m để hàm số y = đồng biến khoảng x + 5m (−∞; −10)? A Vô số B C D Câu [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, √ N, P √ √ √ 20 14 D A B C 3 Câu 10 Dãy số !n có giới hạn bằng3 0? !n −2 n − 3n A un = B un = C un = n − 4n D un = n+1 Câu 11 Dãy số sau có giới hạn khác 0? sin n A B n n C √ n D n+1 n Câu 12 Phần thực phần ảo số phức z = −i + A Phần thực 4, phần ảo B Phần thực −1, phần ảo −4 C Phần thực −1, phần ảo D Phần thực 4, phần ảo −1 Câu 13 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD Trang 1/4 Mã đề √ √ √ √ a a A B C a D a 3 Câu 14 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 + 2e + 2e − 2e − 2e A m = B m = C m = D m = − 2e 4e + 4e + − 2e Câu 15 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a D C √ x2 + 3x + Câu 16 Tính giới hạn lim x→−∞ 4x − 1 C D A B − 4 Câu 17 Khẳng định sau đúng? A Hình lăng trụ đứng hình lăng trụ B Hình lăng trụ đứng có đáy đa giác hình lăng trụ C Hình lăng trụ tứ giác hình lập phương D Hình lăng trụ có đáy đa giác hình lăng trụ Câu 18 Khối đa diện loại {5; 3} có tên gọi gì? A Khối tứ diện B Khối 12 mặt C Khối bát diện D Khối 20 mặt Câu 19 [2] Tổng nghiệm phương trình x−1 x = 8.4 x−2 A − log2 B − log3 C − log2 D − log2 Câu 20 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 20, 128 triệu đồng B 50, triệu đồng C 3, triệu đồng D 70, 128 triệu đồng Câu 21 [1] Giá trị biểu thức log √3 10 1 B A − 3 C Câu 22 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e−1 ; e] 1 A −e B − C − e 2e D −3 D − e2 Câu 23 [2D1-3] Tìm giá trị tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − đồng biến khoảng có độ dài lớn 5 A m > − B − < m < C m ≥ D m ≤ 4 d = 300 Câu 24 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vuông A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V √ khối lăng trụ cho √ √ 3a a3 3 A V = 6a B V = C V = 3a D V = 2 Câu 25 Khối đa diện loại {3; 4} có số mặt A 10 B 12 C D Câu 26 Khối đa diện thuộc loại {4; 3} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Trang 2/4 Mã đề Câu 27 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 28 Cho hai đường thẳng phân biệt d d0 đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Có C Có hai D Khơng có Câu 29 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B −1 + sin x cos x C − sin 2x D + sin 2x Câu 30 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất khơng thay đổi người khơng rút tiền ra? A 10 năm B 12 năm C 14 năm D 11 năm Câu 31 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 20 B 15, 36 C 3, 55 D 24 ln x p Câu 32 Gọi F(x) nguyên hàm hàm y = ln x + mà F(1) = Giá trị F (e) là: x 8 A B C D 3 Câu 33 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) Câu 34 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp cách tháng, số tiền hoàn nợ tháng ông A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ông ta cần trả cho ngân hàng gần với số tiền ? A 2, 20 triệu đồng B 2, 22 triệu đồng C 3, 03 triệu đồng D 2, 25 triệu đồng Câu 35 Tứ diện thuộc loại A {3; 3} B {5; 3} Câu 36 [1] Tính lim A +∞ x→3 x−3 bằng? x+3 B −∞ C {4; 3} D {3; 4} C D tan x + m Câu 37 [2D1-3] Tìm giá trị thực tham số m để hàm số y = nghịch biến khoảng m tan x +  π 0; A (−∞; −1) ∪ (1; +∞) B [0; +∞) C (−∞; 0] ∪ (1; +∞) D (1; +∞) Câu 38 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −3 B −6 C D Câu 39 [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≤ C m ≥ D m > Trang 3/4 Mã đề Câu 40 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A n3 lần B n3 lần C 2n2 lần D 2n3 lần Câu 41 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C B u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 42 [1] Cho a > 0, a , Giá trị biểu thức log a1 a2 A B −2 C − Câu 43 [1] Phương trình log2 4x − log 2x = có nghiệm? A Vô nghiệm B nghiệm C nghiệm D D nghiệm Câu 44 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng x+1 y−5 z d: = = Tìm véctơ phương ~u đường thẳng ∆ qua M, vng góc với đường thẳng 2 −1 d đồng thời cách A khoảng bé A ~u = (2; 1; 6) B ~u = (3; 4; −4) C ~u = (2; 2; −1) D ~u = (1; 0; 2) Câu 45 Cho số phức z thỏa mãn |z + √ 3| = |z − 2i| = |z − − 2i| Tính |z| √ A |z| = 10 B |z| = 17 C |z| = 17 D |z| = 10 Câu 46 [4-1243d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 C 34 A B D 68 17 Câu 47 [2] Tập xác định hàm số y = (x − 1) A D = R \ {1} B D = (−∞; 1) C D = (1; +∞) D D = R Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R C Nếu Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 49 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C un D +∞ Câu 50 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ mơđun z √ √ √ √ 13 A 26 B C 13 D 13 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A D A B B 10 A C 11 12 D 13 A D 14 15 C B 19 D B 18 B 20 A 22 23 A 24 25 C 27 C 16 21 A D 29 A B C 28 C 30 D D B 32 33 B 34 35 A C 26 31 B 36 37 D 39 41 C 17 B C 38 A 40 A C B 42 43 D 44 45 D 46 47 C 48 49 C 50 B D B C B ... log2 Câu 20 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu... (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 10 năm B 12 năm C 14 năm D 11 năm Câu 31 [2] Số lượng loài... (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) Câu 34 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách:

Ngày đăng: 13/03/2023, 12:10

w