Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1 c] Giá trị của biểu thức log7 16 log7 15 − log7 15[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [1-c] Giá trị biểu thức A log7 16 log7 15 − log7 B 15 30 C −2 D −4 Câu Giá trị cực đại hàm số y = x3 − 3x + A B −1 C D Câu Hàm số y = −x3 + 3x − đồng biến khoảng đây? A (−1; 1) B (1; +∞) C (−∞; 1) D (−∞; −1) Câu [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A B 2e + C e D 2e Câu Cho số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = Tìm giá trị nhỏ P = xy + x + 2y + 17 A −12 B −5 C −15 D −9 x+2 Câu Có giá trị nguyên tham số m để hàm số y = đồng biến khoảng x + 5m (−∞; −10)? A B C Vô số D log 2x Câu [3-1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x B y0 = D y0 = A y0 = C y0 = 3 x ln 10 x 2x ln 10 2x ln 10 Câu [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, N, P √ √ √ √ 14 20 A B C D 3 Câu [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất khơng thay đổi người không rút tiền ra? A 10 năm B 11 năm C 14 năm D 12 năm x−1 Câu 10 [3-1214d] Cho hàm số y = có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét x+2 tam giác √ có độ dài √ √ ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB A B C 2 D Câu 11 [2] Đạo hàm hàm số y = x ln x A y0 = + ln x B y0 = x + ln x C y0 = − ln x D y0 = ln x − Câu 12 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 A B C D 12 12 Trang 1/4 Mã đề Câu 13 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng z x+1 y−5 = = Tìm véctơ phương ~u đường thẳng ∆ qua M, vuông góc với đường thẳng d: 2 −1 d đồng thời cách A khoảng bé A ~u = (2; 1; 6) B ~u = (2; 2; −1) C ~u = (3; 4; −4) D ~u = (1; 0; 2) x+1 Câu 14 Tính lim x→+∞ 4x + 1 A B C D Câu 15 [1] Phương trình log3 (1 − x) = có nghiệm A x = −5 B x = −2 C x = D x = −8 2 + + ··· + n Câu 16 [3-1133d] Tính lim n3 A B C +∞ D 3 Câu 17 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 18.! Dãy số sau có giới !n hạn 0? n B A 3 !n D − !n C e Câu 19 Tính √4 mơ đun số phức z biết √ (1 + 2i)z = + 4i √ A |z| = B |z| = C |z| = D |z| = Câu 20 Cho a số thực dương α, β số thực Mệnh đề sau sai? α aα C aα bα = (ab)α D aα+β = aα aβ A aαβ = (aα )β B β = a β a !x 1−x Câu 21 [2] Tổng nghiệm phương trình = + A − log2 B − log3 C log2 D − log2 x−3 x−2 x−1 x + + + y = |x + 2| − x − m (m tham x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A [2; +∞) B (−∞; 2] C (2; +∞) D (−∞; 2) 3a , hình chiếu vng Câu 23 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Câu 24 [3-12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 22 [4-1213d] Cho hai hàm số y = Câu 25 [1-c] Giá trị biểu thức log2 36 − log2 144 A −4 B −2 C D Câu 26 [1] Phương trình log2 4x − log 2x = có nghiệm? A nghiệm B nghiệm C Vô nghiệm D nghiệm Trang 2/4 Mã đề Câu 27 Khối đa diện loại {4; 3} có số cạnh A 20 B 12 C 10 D 30 Câu 28 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 29 [1] Tập nghiệm phương trình log2 (x2 − 6x + 7) = log2 (x − 3) A {3} B {2} C {5; 2} D {5} Câu 30 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 31 [4-1244d] Trong tất số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − + 5i| = |z − i| Biết rằng, |z + − i| nhỏ Tính P = ab 13 23 A B − C − D 100 100 16 25 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 a b2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 33 [3-c] Cho < x < 64 Tìm giá trị lớn f (x) = log42 x + 12 log22 x log2 x A 82 B 81 C 96 D 64 tan x + m Câu 34 [2D1-3] Tìm giá trị thực tham số m để hàm số y = nghịch biến khoảng m tan x + π 0; A (−∞; −1) ∪ (1; +∞) B (1; +∞) C (−∞; 0] ∪ (1; +∞) D [0; +∞) Câu 35 Một máy bay hạ cánh sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần với vận tốc v(t) = − t + 69(m/s), t khoảng thời gian tính giây Hỏi giây cuối trước dừng hẳn, máy bay di chuyển mét? A 25 m B 27 m C 387 m D 1587 m Câu 36 Cho hàm số y = |3 cos x − sin x + 8| với x ∈ [0; 2π] Gọi M, m giá trị lớn nhất, giá trị nhỏ √M + m √ hàm số Khi tổng √ A B C D 16 Câu 37 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 38 [2] Tập xác định hàm số y = (x − 1) A D = R \ {1} B D = R C D = (1; +∞) D D = (−∞; 1) Trang 3/4 Mã đề Câu 39 [3] Biết giá trị lớn hàm số y = số tự nhiên Tính S = m2 + 2n3 A S = 32 B S = 135 ln2 x m đoạn [1; e3 ] M = n , n, m x e C S = 24 D S = 22 Câu 40 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim f (x) = f (a) x→a x→a x→a C f (x) có giới hạn hữu hạn x → a D lim+ f (x) = lim− f (x) = +∞ x→a x→a log 2x Câu 41 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x B y0 = C y0 = D y0 = A y0 = 3 2x ln 10 x x ln 10 2x ln 10 log(mx) Câu 42 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < B m ≤ C m < ∨ m > D m < ∨ m = t Câu 43 [4] Xét hàm số f (t) = t , với m tham số thực Gọi S tập tất giá trị m cho + m2 f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A Vô số B C D √ √ 4n2 + − n + Câu 44 Tính lim 2n − 3 A B C +∞ D Câu 45 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 B k = C k = D k = A k = 15 18 Câu 46 [2-c] Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x + ln x đoạn [1; e] Giá trị T = M + m 2 C T = e + D T = e + A T = e + B T = + e e 0 0 Câu 47 Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D , biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4) Tìm tọa độ đỉnh A0 A A0 (−3; 3; 3) B A0 (−3; −3; −3) C A0 (−3; −3; 3) D A0 (−3; 3; 1) d = 300 Câu 48 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V khối lăng trụ cho √ √ √ 3a3 a3 3 C V = D V = A V = 6a B V = 3a 2 Câu 49 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ √ Thể tích khối chóp S 3.ABC √ √ a a a3 a3 A B C D 12 12 x+1 Câu 50 Tính lim x→−∞ 6x − 1 A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A A A A A C B 10 A B 12 11 A 13 D 14 A 15 D 16 17 A 18 A 19 A 20 21 D D B B 22 A 23 A 24 25 B 26 27 B 28 29 D C D B 30 C C 31 B 32 33 B 34 35 B 36 37 A 38 39 A 40 B D C B 41 C 42 D 43 C 44 D 46 A 48 47 A 49 A C 50 A ...Câu 13 Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) đường thẳng z x+1 y−5 = = Tìm... log2 x−3 x−2 x−1 x + + + y = |x + 2| − x − m (m tham x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A [2; +∞) B (−∞; 2] C (2; +∞) D (−∞; 2)... !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 29 [1] Tập nghiệm phương trình log2 (x2 − 6x + 7) = log2 (x − 3) A {3} B {2} C {5; 2} D {5} Câu 30 Hàm