Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 7 B 5 C[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B x+1 Câu Tính lim x→−∞ 6x − 1 A B x−2 Câu Tính lim x→+∞ x + A B − 2n + Câu Tính giới hạn lim 3n + A B x+1 Câu Tính lim x→+∞ 4x + A B Câu !Dãy số sau có giới !hạn 0? n n A B − 3 4x + bằng? x→−∞ x + A B 2x + Câu Tính giới hạn lim x→+∞ x + A B C D C D C D −3 C D C D !n C e !n D C −1 D −4 C −1 D Câu [1] Tính lim Câu Dãy số !n có giới hạn 0? !n −2 A un = B un = Câu 10 Tính lim x→2 A C un = x+2 bằng? x B n3 − 3n n+1 C D un = n2 − 4n D log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 1 − log 2x − ln 2x A y0 = C y = B y0 = 2x ln 10 x3 x3 ln 10 √ √ D y0 = − ln 2x 2x3 ln 10 − 3m + = có nghiệm C < m ≤ D m ≥ √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B Vơ số C 62 D 64 Câu 12 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B ≤ m ≤ 4 1−x2 − 4.2 x+ 1−x2 Trang 1/5 Mã đề Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C 2020 D log2 2020 Câu 15 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ 1 Câu 16 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm log(mx) = có nghiệm thực log(x + 1) C m < D m < ∨ m > Câu 18 [1226d] Tìm tham số thực m để phương trình A m < ∨ m = B m ≤ Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m ≤ D m < 4 4 Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 3) C (1; 3; 2) D (2; 4; 4) 12 + 22 + · · · + n2 n3 B Câu 21 [3-1133d] Tính lim ! 3n + 2 + a − 4a = Tổng phần tử Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D un Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C D n−1 Câu 24 Tính lim n +2 A B C D A +∞ C D Câu 25 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a > lim = lim = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = ! un D Nếu lim un = a < lim = > với n lim = −∞ Câu 26 Tính lim n+3 A B Câu 27 Dãy số sau có giới hạn khác 0? n+1 sin n A B n n C C n D D √ n Trang 2/5 Mã đề ! 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ 2 Câu 29 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n n2 − B u = C un = A un = n 2 5n − 3n (n + 1) 5n + n2 Câu 30 Tính lim D D un = n2 − 3n n2 2n2 − 3n6 + n4 D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B D √ C √ a +b a2 + b2 a2 + b2 a2 + b2 A B C d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B C 2a D 4a 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 3a Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a D A C √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a a 38 3a 58 3a 38 B C D A 29 29 29 29 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 17 19 19 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 19 19 17 Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) Trang 3/5 Mã đề A 5a B 8a C a D 2a d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 41 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z f (x)g(x)dx = A Z C f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx B Z D ( f (x) − g(x))dx = f (x)dx − g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 42 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 44 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 45 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Trang 4/5 Mã đề Câu 47 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C B u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 48 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III) D (II) (III) Câu 50 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C D C A A A 10 A B 11 C 12 B 13 C 14 B 15 16 A B 18 A 17 A 19 21 D 22 C 23 25 20 A C 24 B C B 26 A 28 27 A D 29 C 30 B 31 C 32 B 33 B 35 D 37 39 34 C 36 C 38 C B 41 A 40 C 42 C 43 C 44 45 C 46 A 47 B 48 A 49 B 50 A B B ... + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C D C A A A 10 A B 11 C 12 B 13 C 14 B 15 16 A B 18 A 17 A 19 21 D 22 C 23 25 20 A C... 18 [122 6d] Tìm tham số thực m để phương trình A m < ∨ m = B m ≤ Câu 19 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m ≤ D m < 4 4 Câu 20 [122 7d]... [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) Trang 3/5 Mã đề A 5a