Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 2 B 3 C 1 D 0 Câu 2 Tí[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n + Câu Tìm giới hạn lim n+1 A B C 2n + Câu Tính giới hạn lim 3n + 2 B C A x−2 Câu Tính lim x→+∞ x + C −3 A B − Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A +∞ B −∞ D D D 2 D − 5 Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim f (x) = f (a) x→a x→a x→a C f (x) có giới hạn hữu hạn x → a D lim+ f (x) = lim− f (x) = +∞ C x→a x→a − 2n Câu [1] Tính lim bằng? 3n + 2 A B − C D 3 Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim+ f (x) = f (b) D lim− f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x+1 Câu Tính lim x→+∞ 4x + A B x−3 Câu 10 [1] Tính lim bằng? x→3 x + A B +∞ C x→b D C −∞ D log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x A y0 = C y0 = B y0 = D y0 = 3 2x ln 10 x 2x ln 10 x ln 10 Câu 12 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey + B xy0 = ey − C xy0 = −ey − D xy0 = ey + Trang 1/5 Mã đề Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 6) C (2; 4; 3) D (1; 3; 2) Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C 2020 D log2 13 Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B 1 3|x−1| C Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C = 3m − có nghiệm D D Câu 17 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 C [3; 4) D ;3 A (1; 2) B 2; 2 √ ab Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ − xy Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 18 11 − 29 11 − 19 11 + 19 11 − B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 21 Tính lim A Câu 22 Tính lim A +∞ 7n2 − 2n3 + 3n3 + 2n2 + B C cos n + sin n n2 + B C −∞ Câu 23 Dãy số sau có giới hạn khác 0? 1 B √ A n n ! 1 Câu 24 Tính lim + + ··· + 1.2 2.3 n(n + 1) C sin n n D - D D n+1 n D 2 + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = ! 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 A B C Trang 2/5 Mã đề Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A Câu 28 Tính lim n+3 A B C −∞ B C un D +∞ D Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = B Nếu lim un = a , lim = ±∞ lim !vn un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ n−1 Câu 30 Tính lim n +2 A B C D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A √ B C √ D √ 2 2 2 a +b a +b a +b a + b2 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 a 38 3a A B C D 29 29 29 29 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a C D 2a A a B 0 0 Câu 34 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a C D 2 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 17 19 3a Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 0 0 Câu 37.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 19 17 19 Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a C D A a B 2 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B a D a C A Câu 41 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A Z C f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , ( f (x) − g(x))dx = B Z D ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx Z g(x)dx Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 43 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C dx = ln |x| + C, C số x B Z D D xα dx = xα+1 + C, C số α+1 0dx = C, C số Câu 44 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B G(x) = F(x) − C khoảng (a; b), với C số C Cả ba câu sai D F(x) = G(x) khoảng (a; b) Câu 45 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 46 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) Trang 4/5 Mã đề B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai sai Câu 49 Xét hai khẳng đinh sau C Câu (I) sai D Câu (III) sai (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (II) Câu 50 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K B f (x) có giá trị lớn K D f (x) xác định K D Chỉ có (I) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D B B B 10 A C 11 D 12 13 B 14 15 B 16 D 17 B D C 18 A 20 19 A 21 D 22 23 D 24 A 25 D C C B D B C 26 27 A 28 A 29 C 31 A 33 C 30 B 32 B 34 A D 36 D 37 A 38 D 39 A 40 41 A 42 A 35 43 B 44 45 47 49 D C B 46 A B 48 A 50 C C ... có (I) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D B B B 10 A C 11 D 12 13 B 14 15 B 16 D 17 B D C 18 A 20 19 A 21 D 22 23 D 24 A 25... để phương trình nhất? A B 1 3|x−1| C Câu 16 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B Vô nghiệm C = 3m − có nghiệm D D Câu 17 [122 20d-2mh202047] Xét số thực dương a, b, x,... C [3; 4) D ;3 A (1; 2) B 2; 2 √ ab Câu 18 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ − xy Câu 19 [122 10d] Xét số thực dương x, y thỏa mãn log3