1. Trang chủ
  2. » Tất cả

Đề ôn thi toán thpt khối 12 (175)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,43 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A 1 B 0 C +∞ D −∞ Câ[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n − 2n2 + 3n + A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − A B Câu Tính lim x+1 x→+∞ 4x + B C +∞ C D −∞ D − Câu Tính lim A Câu [1] Tính lim x→3 A x−3 bằng? x+3 B −∞ − n2 Câu [1] Tính lim bằng? 2n + 1 A − B 2n + Câu Tìm giới hạn lim n+1 A B C D C +∞ D D C D C Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B f (x) có giới hạn hữu hạn x → a x→a x→a C lim f (x) = f (a) x→a Câu !Dãy số sau có giới !hạn 0? n n 5 A B − 3 − 2n Câu [1] Tính lim bằng? 3n + A − B 3 4x + bằng? Câu 10 [1] Tính lim x→−∞ x + A −4 B −1 D lim+ f (x) = lim− f (x) = a x→a !n C e x→a !n D D C D C Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B log2 13 C 13 D 2020 Câu 12 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vơ số D Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 3) C (2; 4; 6) D (1; 3; 2) Trang 1/5 Mã đề log 2x Câu 14 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x A y0 = B y0 = C y0 = 2x ln 10 x ln 10 2x ln 10 D y0 = Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| − log 2x x3 = 3m − có nghiệm D Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 log(mx) = có nghiệm thực Câu 17 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m ≤ B m < ∨ m > C m < D m < ∨ m = Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m > D m < √ Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A ;3 B (1; 2) C [3; 4) D 2; 2 √ Câu 20 [12215d] Tìm m để phương trình x+ A m ≥ B < m ≤ cos n + sin n Câu 21 Tính lim n2 + A +∞ B 1−x2 √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 D −∞ ! 3n + 2 + a − 4a = Tổng phần tử Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D n−1 Câu 23 Tính lim n +2 A B C D Câu 24 Dãy số sau có giới hạn khác 0? 1 A √ B n n C C sin n n Câu 25 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim B +∞ A C −∞ D n+1 n un D 2n − Câu 26 Tính lim 3n + n4 A B C ! 1 + ··· + Câu 27 [3-1131d] Tính lim + 1+2 + + ··· + n A B C 2 D D +∞ Trang 2/5 Mã đề 1 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B ! C D Câu 29 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a > lim = lim = +∞ Câu 30 Dãy số sau có giới hạn 0? − 2n n2 + n + B un = A un = (n + 1) 5n + n2 C un = n2 − 5n − 3n2 D un = n2 − 3n n2 [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S BC) √ √ với mặt đáy S O = a √ a 57 2a 57 a 57 B C a 57 D A 19 17 19 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A C √ D √ B √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a C D 2a B A a 2 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 36 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 2a 8a a A B C D 9 9 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B a C D A 2 d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B C 4a D 3a Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a D A C Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu 42 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Cả ba đáp án Câu 43 Z Trong khẳng định sau, khẳng định sai? Z xα+1 dx = ln |x| + C, C số B xα dx = + C, C số A α+1 Z x Z 0dx = C, C số C dx = x + C, C số D Câu 44 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx f (x)dx − Z g(x)dx D Câu 45 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ A Z C f (x)dx = F(x) +C ⇒ f (t)dt = F(t) + C B Z k f (x)dx = f B Z f (u)dx = F(u) +C D Z Z f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 46 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Trang 4/5 Mã đề Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 48 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) có giá trị lớn K Câu 49 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 50 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R B Nếu Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A D D C A 11 B D 10 D 12 A C 13 14 B B 15 D 16 17 D 18 A 19 A 21 20 B 23 A 25 27 D D 22 D 24 D 28 B 30 B 33 D 34 35 D 36 C 37 38 D B C B 40 B 41 A 45 C 32 31 A 43 C 26 B 29 39 B 42 B C B 44 D 46 D 47 A 48 A 49 A 50 A D ... (x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B D A D D C A 11 B D 10 D 12 A C 13 14 B B 15 D 16 17 D 18 A 19 A 21 20 B 23 A 25 27 D... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu... lim + 1+2 + + ··· + n A B C 2 D D +∞ Trang 2/5 Mã đề 1 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B ! C D Câu 29 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = !

Ngày đăng: 10/03/2023, 23:39

w