1. Trang chủ
  2. » Tất cả

Đề ôn thi toán thpt khối 12 (143)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,6 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − 2n 3n + 1 bằng? A 1 3 B 1 C 2 3 D − 2[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − 2n Câu [1] Tính lim bằng? 3n + 1 A B 2n + Câu Tính giới hạn lim 3n + A B 2 x−2 Câu Tính lim x→+∞ x + A −3 B C C D C − D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B − sin 2x C −1 + sin 2x Câu Dãy số có giới hạn 0?! n n3 − 3n B un = A un = n+1 D − !n −2 C un = D −1 + sin x cos x D un = n2 − 4n Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm 2n − Câu Tính lim 2n + 3n + A B −∞ C Câu Phát biểu sau sai? A lim = n C lim k = n 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −4 D +∞ B lim qn = (|q| > 1) D lim un = c (un = c số) C D −1 Câu 10 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x)g(x)] = ab x→+∞ f (x) a C lim = x→+∞ g(x) b x→+∞ B lim [ f (x) − g(x)] = a − b x→+∞ D lim [ f (x) + g(x)] = a + b √ Câu 11 [12215d] Tìm m để phương trình x+ 1−x 3 B < m ≤ A ≤ m ≤ 4 Câu 12 [1225d] Tìm tham số thực m để phương x≥1 A m ≥ B m < x→+∞ √ x+ 1−x2 − 3m + = có nghiệm C ≤ m ≤ D m ≥ trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực − 4.2 C m > D m ≤ Trang 1/5 Mã đề Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C log2 13 D 2020 Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A 3|x−1| = 3m − có nghiệm B C D log(mx) Câu 16 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m > C m < ∨ m = D m < Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m < C m ≥ D m ≤ 4 4 x x x Câu 18 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B C Vô nghiệm D Câu 19 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 3) C (1; 3; 2) D (2; 4; 6) Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 21 Phát biểu sau sai? A lim un = c (Với un = c số) B lim k = với k > n C lim qn = với |q| > D lim √ = n Câu 22 Dãy số sau có giới hạn khác 0? 1 A √ B n n n−1 Câu 23 Tính lim n +2 A B 7n − 2n3 + Câu 24 Tính lim 3n + 2n2 + A B - 3 C n+1 n C D sin n n D C D ! 3n + 2 + a − 4a = Tổng phần tử Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Câu 26 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A B C D ! 1 + + ··· + 1.2 2.3 n(n + 1) A B C Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim Câu 27 Tính lim D ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un = C Nếu lim un = a , lim = ±∞ lim D Nếu lim un = +∞ lim = a > lim(un ) = +∞ 12 + 22 + · · · + n2 Câu 29 [3-1133d] Tính lim n3 A B C D +∞ 3 ! 1 Câu 30 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C D +∞ A B 2 Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D √ A 2 a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ BC) √ với mặt đáy S O = a Khoảng cách từ O đến (S √ 2a 57 a 57 a 57 B a 57 D C A 17 19 19 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 b a2 + c2 a b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 Câu 36 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 8a a 5a A B C D 9 9 Trang 3/5 Mã đề Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C √ D √ A 2 a +b a2 + b2 a2 + b2 a2 + b2 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a B C D A 3 Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 a 38 3a 38 A B C D 29 29 29 29 Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 42 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Trang 4/5 Mã đề Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu 45 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số Câu 46 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) + C ⇒ Z B Z f (t)dt = F(t) + C D Z f (x)dx = F(x) + C Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z k f (x)dx = k f (x)dx, k số Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 48 Z Trong khẳng định sau, khẳng định sai? Z Z C dx = ln |x| + C, C số x Z xα+1 + C, C số D xα dx = α+1 dx = x + C, C số A B 0dx = C, C số Câu 49 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Chỉ có (II) D Cả hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B A C D C D B 10 C 11 A C 12 A 13 14 A C 15 D 16 17 D 18 A 19 D 20 C 22 C 21 C 23 D 24 25 D 26 A 27 D 28 A 29 31 35 D C C 39 34 C 40 C 43 C C B 42 A D 44 A 45 B 46 47 B 48 49 B 38 D 41 32 36 B 37 B 30 A B 33 C D 50 B D C ... hai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B A C D C D B 10 C 11 A C 12 A 13 14 A C 15 D 16 17 D 18 A 19 D 20 C 22 C 21 C 23 D 24... m = D m < Câu 17 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m < C m ≥ D m ≤ 4 4 x x x Câu 18 [122 11d] Số nghiệm phương trình 12. 3 + 3.15 − = 20... nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A B C D ! 1 + + ··· + 1.2 2.3 n(n + 1) A B C Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim

Ngày đăng: 10/03/2023, 23:38

w