Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim+ f (x) = lim− f (x) = a C lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a x→a D lim f (x) = f (a) x→a Câu Tính lim x→1 A −∞ x −1 x−1 B C D +∞ C D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu Phát biểu sau sai? A lim = n C lim un = c (un = c số) Câu Tìm giới hạn lim A x+1 Câu Tính lim x→+∞ 4x + A x+1 Câu Tính lim x→−∞ 6x − A 2n + n+1 B B lim qn = (|q| > 1) D lim k = n C D C D C D B B 2−n Câu Giá trị giới hạn lim n+1 A −1 B − 2n Câu [1] Tính lim bằng? 3n + 2 A B − 3 Câu 10 Dãy số !n có giới hạn 0? !n −2 A un = B un = C D C D C un = n3 − 3n n+1 D un = n2 − 4n Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C log2 2020 D 2020 Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = ey − C xy0 = −ey + D xy0 = −ey − 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 19 11 − 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 12 [3-12217d] Cho hàm số y = ln Trang 1/5 Mã đề √ Câu 14 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C Vô số D 64 Câu 15 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m > C m < D m ≤ 4 4 x x Câu 16 [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực x≥1 A m < B m > C m ≥ D m ≤ Câu 17 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (1; 3; 2) C (2; 4; 3) D (2; 4; 6) √ Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 ;3 C 2; D (1; 2) A [3; 4) B 2 Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 21 Dãy số sau có giới hạn 0? − 2n n2 − A un = B u = n 5n + n2 5n − 3n2 C un = Câu 22 Dãy số sau có giới hạn khác 0? sin n n+1 B A n n C n2 + n + (n + 1)2 n D un = n2 − 3n n2 D √ n Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D ! 3n + 2 Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = ! 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ D 2 Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ ! un B Nếu lim un = a > lim = lim = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = D Nếu lim un = +∞ lim = a > lim(un ) = +∞ un Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D cos n + sin n Câu 29 Tính lim n2 + A −∞ B C +∞ D 7n2 − 2n3 + Câu 30 Tính lim 3n + 2n2 + A - B C D +∞ [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a.√Khoảng cách từ O đến (S √ 2a 57 a 57 a 57 B C D a 57 A 17 19 19 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ √ Khoảng cách từ A đến (S√BC) √ 2a 57 a 57 a 57 C D A a 57 B 17 19 19 Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C D a d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 0 0 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 37 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a C D 2 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B C a D a 3 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B C 2a D 4a Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 44 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 45 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) Trang 4/5 Mã đề (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II) D (I) (III) Câu 46 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (I) D Chỉ có (II) Câu 47 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) Câu 48 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 49 Z Trong khẳng định sau, khẳng định sai? Z A dx = ln |x| + C, C số B 0dx = C, C số x Z Z xα+1 α C x dx = + C, C số D dx = x + C, C số α+1 Câu 50 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C B B B A A C 10 A B 11 A 13 C 12 B 14 B 15 D 16 17 D 18 19 D 20 21 A 23 C 24 A B B 28 D 31 B 30 A C 32 B 35 D 26 C 29 33 B 22 A 25 27 C 34 C B 36 A C 37 A 38 B 39 A 40 B 41 B 42 A 43 45 D B 46 A C D 47 49 44 48 50 C D B ... g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C B B B A A C 10 A B 11 A 13 C 12 B 14 B 15 D 16 17 D 18 19 D 20 21 A 23 C 24 A B B 28 D... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) Trang 4/5 Mã đề (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III)... Câu 18 [122 20d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 ;3 C 2; D (1; 2) A [3; 4) B 2 Câu 19 [122 14d]