1. Trang chủ
  2. » Tất cả

Đề ôn thi toán thpt khối 12 (77)

6 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,42 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim √ 4n2 + 1 − √ n + 2 2n − 3 bằng A 1 B 3 2 C +[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu A Câu A √ √ 4n2 + − n + Tính lim 2n − 3 B 2 x − 5x + Tính giới hạn lim x→2 x−2 B C +∞ D C D −1 Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) D lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b Câu Dãy số !n có giới hạn 0? B un = n2 − 4n A un = Câu Giá trị lim(2x2 − 3x + 1) x→1 A B 2n + Câu Tính giới hạn lim 3n + A B x−3 Câu [1] Tính lim bằng? x→3 x + A B +∞ 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B 2 Câu !Dãy số sau có giới !n hạn 0? n A B e 4x + Câu 10 [1] Tính lim bằng? x→−∞ x + A −1 B x→b n3 − 3n C un = n+1 !n −2 D un = C D +∞ C D C D −∞ C −1 D !n C − !n D C −4 D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 − 18 11 − 29 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 12 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D log 2x Câu 13 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = x x ln 10 2x ln 10 2x3 ln 10 Câu 11 [12210d] Xét số thực dương x, y thỏa mãn log3 Trang 1/5 Mã đề Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 2020 C log2 13 D 2020 log(mx) = có nghiệm thực Câu 15 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > Câu 16 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = e − C xy0 = ey + D xy0 = −ey − Câu 17 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 4] C m ∈ [−1; 0] D m ∈ [0; 1] Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 6) D (2; 4; 4) 7n2 − 2n3 + 3n3 + 2n2 + B - + 22 + · · · + n2 [3-1133d] Tính lim n3 B ! 1 Tính lim + + ··· + 1.2 2.3 n(n + 1) Câu 21 Tính lim A Câu 22 A Câu 23 A B C C C D D +∞ D Câu 24 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D 1 + + ··· + n Mệnh đề sau đúng? n2 + B lim un = 1 C Dãy số un giới hạn n → +∞ D lim un = ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 25 [3-1132d] Cho dãy số (un ) với un = A lim un = Trang 2/5 Mã đề Câu 27 Tính lim A 2n2 − 3n6 + n4 B n−1 Câu 28 Tính lim n +2 A B cos n + sin n Câu 29 Tính lim n2 + A +∞ B −∞ Câu 30 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + A un = B u = n n2 (n + 1)2 C D C D C D C un = n2 − 5n − 3n2 D un = − 2n 5n + n2 Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 b a2 + c2 c a2 + b2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S √ BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C D a 57 A 19 19 17 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C a A D Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab C √ D √ A B √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B a C 2a D Câu 37 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B 2a C a D a 3a Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Trang 3/5 Mã đề Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C A √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a a 5a 2a A B C D 9 9 Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu sai C Chỉ có (I) Câu 42 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A B xα dx = Z D Cả hai câu xα+1 + C, C số α+1 Z C dx = ln |x| + C, C số D 0dx = C, C số x Câu 43 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 45 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx B Z f (x)dx − Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 46 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Trang 4/5 Mã đề Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Cả hai sai C Chỉ có (I) D Chỉ có (II) Câu 48 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z D f (x)dx = f (x) Câu 49 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) liên tục K Câu 50 Trong khẳng định sau, khẳng định sai? A Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C B u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D A D C C C B 10 D D 11 B 12 C 13 B 14 C 15 B 16 17 B 18 A 19 C 20 C C 21 B 22 23 B 24 A 25 D 27 26 C C 28 A D 29 B 30 D 31 B 32 D 33 B 34 D D 35 D 36 37 D 38 39 D 40 A 41 D 42 43 45 B B 44 C D 46 A B 47 D 48 A 49 D 50 B ... số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D A D C C C B 10 D D 11 B 12 C 13 B 14 C 15 B 16 17 B 18 A 19 C 20 C C 21 B 22 23 B 24... log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 18 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C D Vơ nghiệm q Câu 19 [122 16d] Tìm tất giá trị thực tham số m để phương trình...Câu 14 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 2020 C log2 13 D 2020 log(mx) = có nghiệm thực Câu 15 [122 6d] Tìm tham số thực

Ngày đăng: 10/03/2023, 23:36

w