1. Trang chủ
  2. » Tất cả

Đề ôn thi thhpt môn toán lớp 12 (341)

6 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,53 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→3 x2 − 9 x − 3 A −3 B 6 C +∞ D 3 Câu 2 Tính[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim x→3 A −3 x2 − x−3 B x − 5x + x−2 B C +∞ D C D C +∞ D !n −2 C un = !n D un = Câu Tính giới hạn lim x→2 A −1 Câu Giá trị lim(2x2 − 3x + 1) x→1 A B Câu Dãy số có giới hạn 0? n3 − 3n A un = B un = n2 − 4n n+1 Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin 2x C −1 + sin x cos x x+2 bằng? Câu Tính lim x→2 x A B C Câu !Dãy số sau có giới !hạn 0? n n A B − e !n C D + sin 2x D !n D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 Câu Tính lim A −∞ 2n − + 3n + B 2n2 Câu 10 Tính lim x→5 C D +∞ D −∞ x2 − 12x + 35 25 − 5x A +∞ B − C Câu 11 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 19 18 11 − 29 C Pmin = D Pmin = 21 Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin √ 11 − = Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 2] q x+ log23 x + 1+4m−1 = D m ∈ [0; 1] Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (1; 3; 2) C (2; 4; 3) D (2; 4; 6) Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D log(mx) Câu 17 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < ∨ m = C m < D m ≤ Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ √ Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 A ;3 B 2; C (1; 2) D [3; 4) 2 Câu 20 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m ≤ D m < 4 4 Câu 21 Tính lim n+3 A B C D Câu 22 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = 2 + + ··· + n Câu 24 [3-1133d] Tính lim n3 A B +∞ C D 3 Câu 25 Dãy số sau có giới hạn 0? n2 − 3n − 2n n2 + n + n2 − A un = B u = C u = D u = n n n n2 5n + n2 (n + 1)2 5n − 3n2 ! 1 Câu 26 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Trang 2/5 Mã đề Câu 27 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 28 A Câu 29 A n B C 1 1 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C +∞ Dãy số sau có giới hạn khác 0? sin n B C √ n n D ! D D n+1 n 2n2 − Câu 30 Tính lim 3n + n4 A B C D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab C √ D √ A B √ 2 2 a +b a +b a +b a2 + b2 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 17 19 19 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B C a D A a Câu 36 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C D a A Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 abc b2 + c2 b a2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (I) (III) Câu 42 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ A Z C f (x)dx = F(x) + C ⇒ f (u)dx = F(u) +C B Z f (t)dt = F(t) + C D Z Z D (II) (III) !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 43 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 44 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K Câu 45 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trang 4/5 Mã đề Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai D Chỉ có (I) Câu 47 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số Z x D dx = x + C, C số 0dx = C, C số A B xα+1 C x dx = + C, C số α+1 Câu 48 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên Z α hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 49 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Câu 50 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai sai C Câu (II) sai D Câu (III) sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B D B A D A 10 B 11 A 13 B 15 17 D B 14 B 20 B 24 C D 28 A D 31 30 C 32 33 D 34 35 D 36 37 A D C D C 38 A 39 D 40 A 41 A 42 A 43 A 44 49 C 26 B 29 47 D 22 A 27 A 45 C 18 B 23 A 25 C 12 16 19 A 21 C D 46 A B 48 C D 50 A C ... sai D Câu (III) sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B D B A D A 10 B 11 A 13 B 15 17 D B 14 B 20 B 24 C D 28 A D 31 30 C... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (I) (III) Câu... 2 Câu 20 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m ≤ D m < 4 4 Câu 21 Tính lim n+3 A B C D Câu 22 Trong mệnh đề đây, mệnh đề ! sai? un

Ngày đăng: 10/03/2023, 22:56

w