Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phát biểu nào sau đây là sai? A lim 1 n = 0 B lim 1 nk[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Phát biểu sau sai? A lim = n C lim un = c (un = c số) Câu Tính giới hạn lim x→2 A Câu Tính lim x→1 A x3 − x−1 = nk D lim qn = (|q| > 1) B lim x2 − 5x + x−2 B −1 B C D C −∞ D +∞ Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = +∞ x→a x→a C lim+ f (x) = lim− f (x) = a x→a x→a D f (x) có giới hạn hữu hạn x → a x→a Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B −1 + sin 2x C + sin 2x D − sin 2x Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) − g(x)] = a − b B lim [ f (x)g(x)] = ab x→+∞ x→+∞ C lim [ f (x) + g(x)] = a + b D lim x→+∞ x→+∞ f (x) a = g(x) b Câu Giá trị lim(2x2 − 3x + 1) x→1 A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −1 C D +∞ C −4 D C D D Câu Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B 1 − 2n Câu 10 [1] Tính lim bằng? 3n + A − B 3 C Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = ey − C xy0 = −ey + D xy0 = ey + Câu 11 [3-12217d] Cho hàm số y = ln A xy0 = −ey − Câu 12 [1229d] Đạo hàm hàm số y = A y0 = − ln 2x 2x3 ln 10 B y0 = 2x3 log 2x x2 ln 10 C y0 = − log 2x x3 D y0 = − ln 2x x3 ln 10 Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Trang 1/5 Mã đề √ Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A [3; 4) B ;3 C 2; D (1; 2) 2 − xy Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 11 − 19 B Pmin = C Pmin = D Pmin = A Pmin = 9 21 q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [0; 1] Câu 17 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Câu 19 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C 62 D Vô số Câu 21 Dãy số sau có giới hạn khác 0? n+1 sin n B C A √ n n n ! 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 D n D +∞ ! 3n + 2 Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 7n − 2n + Câu 24 Tính lim 3n + 2n2 + A B C - D 3 ! 1 Câu 25 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Câu 26 Phát biểu sau sai? A lim √ = B lim un = c (Với un = c số) n C lim qn = với |q| > D lim k = với k > n Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim ! un B Nếu lim un = a < lim = > với n lim = −∞ v n ! un C Nếu lim un = a > lim = lim = +∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 28 [3-1132d] Cho dãy số (un ) với un = A lim un = 1 C lim un = 2n2 − Câu 29 Tính lim 3n + n4 A B cos n + sin n Câu 30 Tính lim n2 + A B 1 + + ··· + n Mệnh đề sau đúng? n2 + B lim un = D Dãy số un khơng có giới hạn n → +∞ C D C −∞ D +∞ Câu 31 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 a 38 3a 38 3a B C D A 29 29 29 29 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 0 0 Câu 35.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) Trang 3/5 Mã đề √ a A B 2a C a D a Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 abc b2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a a 2a B C D A 9 9 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Câu 42 đề sau Z [1233d-2] Mệnh Z Z sai? A Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R C Câu 43 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) +C ⇒ !0 f (x)dx = f (x) f (u)dx = F(u) +C B Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 44 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Trang 4/5 Mã đề Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 46 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) có giá trị lớn K Câu 47 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = ln |x| + C, C số A xα dx = α+1 Z Z x C 0dx = C, C số D dx = x + C, C số Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (III) sai C Khơng có câu D Câu (II) sai sai Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B B A B D B D C 10 A 11 B 12 13 B 14 15 D 16 A 17 D 18 A 19 A 21 B D 23 25 B 27 C 29 D 37 B D B 39 41 C 22 C 24 C 26 C 28 C 34 D 36 D 38 D 42 B 44 45 B 40 A C 43 A B C 46 A C 48 47 A 49 20 32 35 B 30 A 31 A 33 D B 50 A C ... 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B B A B D B D C 10 A 11 B 12 13 B 14 15 D 16 A 17 D 18 A 19 A 21 B D 23 25 B 27 C 29 D... k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Câu 42 đề sau Z [123 3d-2] Mệnh Z Z sai? A Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx,... un = c (Với un = c số) n C lim qn = với |q| > D lim k = với k > n Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim ! un B Nếu lim un = a < lim =