1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg môn toán (166)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,09 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của lim x→1 (2x2 − 3x + 1) là A +∞ B 2 C 1 D 0[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị lim(2x2 − 3x + 1) x→1 A +∞ Câu Tính lim x→2 A B C D x+2 bằng? x B C D !n C !n D e Câu !Dãy số sau có giới !hạn 0? n n A B − 3 Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ C lim [ f (x) − g(x)] = a − b x→+∞ − 2n Câu [1] Tính lim bằng? 3n + A − B x+1 Câu Tính lim x→−∞ 6x − A B 2n + Câu Tìm giới hạn lim n+1 A B B lim [ f (x)g(x)] = ab x→+∞ D lim x→+∞ f (x) a = g(x) b C D C D C D 2 1−n bằng? 2n2 + 1 A B 2n + Câu Tính giới hạn lim 3n + 2 A B Câu [1] Tính lim x2 − 5x + x→2 x−2 B C D − C D Câu 10 Tính giới hạn lim A C −1 D Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 13 C 2020 D log2 13 √ Câu 12 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 63 C 64 D Vô số Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Trang 1/5 Mã đề Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m < D m > 4 4 Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 2] Câu 17 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D 1 Trong khẳng định sau đây, khẳng định đúng? Câu 18 [3-12217d] Cho hàm số y = ln x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + Câu 19 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 4) D (2; 4; 3) Câu 20 [12213d] Có giá trị nguyên m để phương trình nhất? A B C Câu 21 Dãy số sau có giới hạn 0? n2 + n + 1 − 2n A un = B u = n (n + 1)2 5n + n2 1 + + ··· + Câu 22 Tính lim 1.2 2.3 n(n + 1) A B 2 Câu 23 Phát biểu sau sai? A lim k = với k > n C lim qn = với |q| > Câu 24 Tính lim A Câu 25 A - C un = 3|x−1| = 3m − có nghiệm D n2 − 5n − 3n2 D un = ! C D B lim un = c (Với un = c số) D lim √ = n 2n2 − 3n6 + n4 B 7n2 − 2n3 + Tính lim 3n + 2n2 + B n2 − 3n n2 C D C D 1 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 ! D +∞ Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = a > lim = lim = +∞ ! un = = a , lim = ±∞ lim + + ··· + n Câu 28 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = cos n + sin n n2 + A B Câu 30 Tính lim n+3 A B Câu 29 Tính lim C −∞ D +∞ C D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ √ a 57 a 57 2a 57 A B a 57 D C 17 19 19 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a B a C D A 2a Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D 0 0 Câu 37.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a C a D A B a Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 B √ C D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a a 8a 2a A B C D 9 9 Câu 41 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R A Nếu f (x)dx = Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu sai D Cả hai câu Câu 43 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B dx = ln |x| + C, C số α+1 Z Z x C dx = x + C, C số D 0dx = C, C số Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Trang 4/5 Mã đề Câu 46 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 47 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 48 Z Các khẳng định sau Z sai? f (u)dx = F(u) +C B Z k f (x)dx = k f (x)dx, k số ! Z Z Z f (x)dx = f (x) C f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D A f (x)dx = F(x) +C ⇒ Z Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D G(x) = F(x) − C khoảng (a; b), với C số Câu 50 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A A D D 14 A D 16 B 20 B 22 B C 23 B 18 A 19 A 24 25 A D C 26 A 27 29 C 12 A B 15 21 D 10 11 17 B A 13 D 28 A C B 30 D 31 C 32 D 33 C 34 D 35 36 A B D 37 39 41 38 A B 40 42 C 43 A 45 D 44 A D 46 47 A 49 C D 48 A D 50 C ... có nguyên hàm (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A A D D 14 A D 16 B 20 B 22 B C 23 B 18 A 19 A 24 25 A D C 26 A 27... 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 ! D +∞ Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = >... C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √

Ngày đăng: 10/03/2023, 21:06

w