1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (285)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,45 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = a x→a C f (x) có giới hạn hữu hạn x → a 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −1 x→a x→a x→a x→a D lim+ f (x) = lim− f (x) = +∞ C −4 D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) Câu Giá trị lim(2x2 − 3x + 1) x→1 A B C +∞ D C − D C +∞ D C +∞ D − C −∞ D 1−n bằng? 2n2 + 1 A B √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B 2 x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A −∞ B x−3 Câu [1] Tính lim bằng? x→3 x + A +∞ B Câu [1] Tính lim Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) + g(x)] = a + b B lim [ f (x)g(x)] = ab x→+∞ x→+∞ f (x) a = D lim [ f (x) − g(x)] = a − b C lim x→+∞ x→+∞ g(x) b Câu 10 Dãy! số có giới hạn 0? n A un = B un = n2 − 4n n3 − 3n C un = n+1 !n −2 D un = Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 12 [1228d] Cho phương trình (2 log3 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 18 11 − 29 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 log(mx) = có nghiệm thực Câu 14 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 15 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ √ Câu 17 [12215d] Tìm m để phương trình x+ B m ≥ A < m ≤ 1−x2 √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 ;3 D 2; A (1; 2) B [3; 4) C 2 √ ab Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m ≤ D m < 4 4 x x Câu 20 [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực x≥1 A m > B m ≥ C m < D m ≤ Câu 21 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ cos n + sin n n2 + B C ! 1 Câu 23 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ 7n2 − 2n3 + Câu 24 Tính lim 3n + 2n2 + A B C - 3 Câu 25 Dãy số sau có giới hạn 0? n2 − 3n − 2n n2 − A un = B u = C u = n n n2 5n + n2 5n − 3n2 Câu 22 Tính lim A −∞ D +∞ D D D un = n2 + n + (n + 1)2 Trang 2/5 Mã đề 12 + 22 + · · · + n2 Câu 26 [3-1133d] Tính lim n3 A B C +∞ D 3 + + ··· + n Mệnh đề sau đúng? Câu 27 [3-1132d] Cho dãy số (un ) với un = n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = n−1 Câu 28 Tính lim n +2 A B C D Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 30 Dãy số sau có giới hạn khác 0? n+1 B √ A n n C n √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 38 a 38 3a A B C D 29 29 29 29 Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C a D Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 B C √ D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 C sin n n D D d = 120◦ Câu 34 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B C 3a D 2a Câu 35 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a A a B C D [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 17 19 Trang 3/5 Mã đề Câu 37 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 5a 8a 2a B C D A 9 9 3a Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a B 2a C a D A Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K B f (x) liên tục K C f (x) xác định K D f (x) có giá trị nhỏ K Câu 42 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z f (x)dx = f (x) C Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 43 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Cả ba đáp án Câu 44 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số Trang 4/5 Mã đề A Câu (III) sai B Câu (I) sai C Khơng có câu D Câu (II) sai sai Câu 46 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) D Cả hai sai Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 48 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) +C ⇒ !0 f (x)dx = f (x) f (u)dx = F(u) +C B Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 49 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = x + C, C số dx = ln |x| + C, C số x Z xα+1 D xα dx = + C, C số α+1 B Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A D C B C D D D D 10 D 11 D 12 A 13 D 14 A 15 D 16 17 D 18 B C 19 C 20 B 21 C 22 B 23 B 24 25 B 26 B 28 27 A 29 C D 30 A B 31 A 32 B 33 C 34 B 35 C 36 B 37 39 41 38 D 40 A C 42 B 43 A 49 B 44 A 45 47 D 46 C B 48 A B D 50 D ... nghiệm thực Câu 14 [122 6d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 13 [122 10d] Xét số thực dương x, y thỏa mãn log3 Câu 15 [122 21d] Tính tổng tất... Câu 18 [122 20d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 ;3 D 2; A (1; 2) B [3; 4) C 2 √ ab Câu 19 [122 4d]... (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 Câu 16 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ √ Câu 17 [122 15d] Tìm m để phương trình x+ B m ≥ A < m ≤

Ngày đăng: 10/03/2023, 20:04

w