1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (357)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,33 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→−∞ x + 1 6x − 2 bằng A 1 3 B 1 C 1 2 D 1 6[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x+1 Câu Tính lim x→−∞ 6x − A B 2−n Câu Giá trị giới hạn lim n+1 A B Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B 1−n bằng? Câu [1] Tính lim 2n + 1 A B 2n + Câu Tìm giới hạn lim n+1 A B Câu Giá trị lim(2x2 − 3x + 1) x→1 A B x −1 Câu Tính lim x→1 x − A B +∞ C D C −1 D 1 = n D lim un = c (un = c số) B lim C D C − D C D C +∞ D C D −∞ Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B f (x) có giới hạn hữu hạn x → a x→a C lim+ f (x) = lim− f (x) = a D lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a x→a Câu 10 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ Câu 12 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m < C m > D m ≥ 4 4 − xy Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 + 19 11 − 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Trang 1/5 Mã đề √ Câu 14 [12215d] Tìm m để phương trình x+ 1−x 3 B < m ≤ A ≤ m ≤ 4 Câu 15 [1225d] Tìm tham số thực m để phương x≥1 A m > B m ≤ √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực − 4.2 x+ 1−x2 C m ≥ D m < Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D Câu 19 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 6) C (2; 4; 4) D (1; 3; 2) Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C D −∞ Câu 22 Dãy số sau có giới hạn khác 0? 1 B A √ n n ! 1 Câu 23 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C sin n n C D n+1 n D Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = ! un = −∞ B Nếu lim un = a < lim = > với n lim ! un C Nếu lim un = a > lim = lim = +∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C D 2 cos n + sin n Câu 26 Tính lim n2 + A B +∞ C D −∞ Câu 27 Tính lim n+3 A B C D Trang 2/5 Mã đề 7n2 − 2n3 + Câu 28 Tính lim 3n + 2n2 + A - B C D + + ··· + n Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 29 [3-1132d] Cho dãy số (un ) với un = Câu 30 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) = với k > nk D lim √ = n B lim Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 32 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C a D B 2a A Câu 33 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 36 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a √ Câu 37 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 38 3a 58 A B C D 29 29 29 29 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 c a2 + b2 a b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C a D A 3a Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C (I) (III) D Cả ba mệnh đề Câu 42 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 44 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C xα+1 x dx = + C, C số α+1 α B Z D D dx = x + C, C số dx = ln |x| + C, C số x Câu 45 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Trang 4/5 Mã đề Câu 46 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z D f (x)dx = f (x) Câu 47 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Câu (III) sai D Khơng có câu sai Câu 49 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Cả ba đáp án Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai D Cả hai sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C C C C C B B 10 A 11 C 12 A 13 C 14 A 15 C 16 17 B 18 A 19 B 20 D B B 21 A 22 23 A 24 C 25 A 26 C 27 29 C D 28 A 30 A B 31 D 32 33 D 34 A 35 A D 36 A 37 D 38 C 39 B 40 C 41 B 42 C 44 C 46 C 43 D 45 A 47 48 B 49 A 50 A D ... (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 Câu 18 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C Vô nghiệm D Câu 19 [122 7d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log +... thực − 4.2 x+ 1−x2 C m ≥ D m < Câu 16 [122 19d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vơ số Câu 17 [122 21d] Tính tổng tất nghiệm phương trình...√ Câu 14 [122 15d] Tìm m để phương trình x+ 1−x 3 B < m ≤ A ≤ m ≤ 4 Câu 15 [122 5d] Tìm tham số thực m để phương x≥1 A m > B m ≤ √ − 3m + =

Ngày đăng: 10/03/2023, 20:02

w