1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (335)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,86 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho f (x) = sin2 x − cos2 x − x Khi đó f ′(x) bằng A 1[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin 2x C −1 + sin x cos x 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B C − n2 bằng? Câu [1] Tính lim 2n + 1 A B x+1 Câu Tính lim x→−∞ 6x − A B x+1 Câu Tính lim x→+∞ 4x + A B C − D − sin 2x D −1 D D C D C D C +∞ D C D −1 C −∞ D +∞ !n C − !n D C Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B √ √ 4n2 + − n + Câu Tính lim 2n − A B Câu Tính giới hạn lim x→2 A Câu [1] Tính lim x→3 A x2 − 5x + x−2 B x−3 bằng? x+3 B Câu 10.! Dãy số sau có giới !n hạn 0? n A B e Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B log2 13 C 13 D 2020 q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 2] C m ∈ [0; 4] D m ∈ [0; 1] Câu 13 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " đây? ! " nhỏ! biểu thức P = x + 2y thuộc tập 5 ;3 B [3; 4) C 2; D (1; 2) A 2 Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B 1 3|x−1| C √ ab = 3m − có nghiệm D Câu 16 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≤ C m ≥ D m > Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm Câu 18 [12214d] Với giá trị m phương trình B < m ≤ A ≤ m ≤ 3|x−2| D = m − có nghiệm C < m ≤ D ≤ m ≤ Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m ≤ D m < A m > 4 4 log(mx) Câu 20 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m < ∨ m = D m ≤ Câu 21 Dãy số sau có giới hạn 0? n2 − − 2n A un = B u = n 5n − 3n2 5n + n2 C un = n2 − 3n n2 D un = n2 + n + (n + 1)2 Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 23 Tính lim A B n−1 n2 + C D B C D B cos n + sin n Câu 25 Tính lim n2 + A +∞ B C D C −∞ D C - D Câu 24 Tính lim A Câu 26 Tính lim A n+3 7n2 − 2n3 + 3n3 + 2n2 + B Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim !vn un B Nếu lim un = a > lim = lim = +∞ ! un = −∞ C Nếu lim un = a < lim = > với n lim D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 28 Tính lim A 2n2 − 3n6 + n4 B 12 + 22 + · · · + n2 Câu 29 [3-1133d] Tính lim n3 A B 3 D C D +∞ Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C C un D +∞ Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 3a C 2a D [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 C D A a 57 B 19 17 19 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D 0 0 Câu 35.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 58 3a 38 A B C D 29 29 29 29 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 19 17 19 Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 13 16 Câu 39 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a 8a a A B C D 9 9 Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a C D a A 2a B Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) Câu 42 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ A Z C f (x)dx = F(x) + C ⇒ f (u)dx = F(u) +C B Z f (t)dt = F(t) + C D Câu 43 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K Z Z D (I) (II) Z k f (x)dx = k f (x)dx, k số !0 f (x)dx = f (x) B f (x) có giá trị nhỏ K D f (x) liên tục K Câu 44 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 45 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] Trang 4/5 Mã đề A B C D Câu 46 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Cả ba đáp án √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D F(x) = G(x) khoảng (a; b) Câu 49 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = ln |x| + C, C số x xα+1 + C, C số B x dx = α+1 Z D dx = x + C, C số α Câu 50 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B C D B B A D A 10 D 11 B 12 A C 13 14 A 15 B 16 C 17 B 18 C 20 C 19 21 C D 22 B 23 A 24 D 25 B 26 C 28 C 29 A 30 C 31 A 32 27 B 33 D 34 A C 35 39 38 B 40 C 41 D 42 A 43 D 44 45 C 46 47 C 48 A 49 C 36 D 37 D B 50 A C B C ...Câu 14 [122 20d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " đây? ! " nhỏ! biểu thức P = x + 2y thuộc tập 5 ;3 B [3; 4) C 2; D (1; 2) A 2 Câu 15 [122 13d]... nghiệm D Câu 16 [122 5d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≤ C m ≥ D m > Câu 17 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x... 12. 3 x + 3.15 x − x = 20 A B C Vô nghiệm Câu 18 [122 14d] Với giá trị m phương trình B < m ≤ A ≤ m ≤ 3|x−2| D = m − có nghiệm C < m ≤ D ≤ m ≤ Câu 19 [122 4d] Tìm tham số thực m để phương trình log23

Ngày đăng: 10/03/2023, 20:02

w