1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (333)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,09 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→2 x + 2 x bằng? A 2 B 0 C 1 D 3 Câu 2 [1] T[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x+2 bằng? x→2 x A B 4x + bằng? Câu [1] Tính lim x→−∞ x + A B −4 Câu Tính lim C D C −1 D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim f (x) = f (a) x→a C lim+ f (x) = lim− f (x) = +∞ D lim+ f (x) = lim− f (x) = a x→a x→a x→a x+1 4x + A B 1−n Câu [1] Tính lim bằng? 2n + 1 A − B 2 x − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 x→a Câu Tính lim x→+∞ C D C D C D C +∞ D C +∞ D C D Câu Giá trị lim (3x2 − 2x + 1) x→1 A B √ √ 4n2 + − n + Câu Tính lim 2n − A B 2n + Câu Tìm giới hạn lim n+1 A B x+1 Câu 10 Tính lim x→−∞ 6x − B A C Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A B D 3|x−1| C Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm = 3m − có nghiệm D D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 18 11 − 29 11 − 19 C Pmin = D Pmin = 21 Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin √ 11 − = Trang 1/5 Mã đề Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 15 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = e − C xy0 = −ey + D xy0 = ey + Câu 16 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≥ D m ≤ Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 13 C log2 2020 D 13 √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 62 C 64 D 63 √ Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 C (1; 2) D ;3 A [3; 4) B 2; 2 Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 3) D (2; 4; 4) Câu 21 Dãy số sau có giới hạn 0? n2 − n2 − 3n A un = B u = n 5n − 3n2 n2 C un = − 2n 5n + n2 D un = n2 + n + (n + 1)2 Câu 22 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = a , lim = ±∞ lim = !vn un = a > lim = lim = +∞ Câu 23 Tính lim n+3 A B C Câu 24 Dãy số sau có giới hạn khác 0? sin n A B √ n n Câu 25 [3-1132d] Cho dãy số (un ) với un = A lim un = 1 C lim un = C n D D n+1 n + + ··· + n Mệnh đề sau đúng? n2 + B Dãy số un khơng có giới hạn n → +∞ D lim un = 12 + 22 + · · · + n2 n3 B Câu 26 [3-1133d] Tính lim A C D +∞ Trang 2/5 Mã đề Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C un D +∞ 2n − Câu 28 Tính lim 3n + n4 A B C D ! 3n + 2 + a − 4a = Tổng phần tử Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Câu 30 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 31 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 26 13 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a C 2a B D Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a a 2a A B C D 9 9 Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C a D [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 3a C D 2a Trang 3/5 Mã đề [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ 2a 57 a 57 a 57 C A B a 57 D 19 19 17 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab B C √ D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 0 0 Câu 40.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Chỉ có (I) D Cả hai Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) Câu 44 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ A Z C f (x)dx = F(x) +C ⇒ f (t)dt = F(t) + C B Z f (u)dx = F(u) +C D Z Z D Cả ba mệnh đề !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trang 4/5 Mã đề Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (I) D Chỉ có (II) Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 48 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K B f (x) xác định K D f (x) liên tục K Câu 49 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) C Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 50 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A Z x Z xα+1 + C, C số C 0dx = C, C số D xα dx = α+1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A B A B B D A D 10 A 11 B 12 13 B 14 15 B 16 17 B 18 B 20 B 19 D B D C 21 C 22 D 23 C 24 D 25 C 26 27 28 B 29 C 30 31 C 32 33 C B D B D 34 B B 35 C 36 37 C 38 C 40 C 39 A 41 B 42 B 43 A 44 C 45 A 46 C 47 B 49 A 48 D 50 D ...Câu 14 [122 19d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 15 [3 -122 17d] Cho hàm số y = ln Trong khẳng... xy0 = −ey + D xy0 = ey + Câu 16 [122 5d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≥ D m ≤ Câu 17 [122 21d] Tính tổng tất nghiệm phương... Câu 18 [122 8d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 64 D 63 √ Câu 19 [122 20d-2mh202047]

Ngày đăng: 10/03/2023, 20:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w