1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (267)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,61 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phát biểu nào trong các phát biểu sau là đúng? A Nếu h[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = a x→a C lim+ f (x) = lim− f (x) = +∞ x→a x→a x+2 bằng? x→2 x A B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B x→a x→a D f (x) có giới hạn hữu hạn x → a Câu Tính lim Câu Dãy số! có giới hạn 0? n −2 n3 − 3n A un = B un = n+1 x+1 4x + B 2n − Tính lim 2n + 3n + B 1−n [1] Tính lim bằng? 2n + 1 B − C D C −1 D !n C un = D un = n2 − 4n C D C −∞ D +∞ Câu Tính lim x→+∞ A Câu A Câu A C D Câu Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ C D Câu 10 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) Câu 11 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m > D m < Câu 12 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 3) C (2; 4; 6) D (1; 3; 2) Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 18 11 − 29 C Pmin = D Pmin = 21 Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = √ 11 − 19 B Pmin = log 2x Câu 14 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x 0 A y0 = B y0 = C y = D y = x ln 10 x3 2x3 ln 10 2x3 ln 10 √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vơ số C 64 D 63 Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C √ Câu 17 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B m ≥ 1−x2 √ D − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 − 4.2 x+ 1−x2 Câu 18 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm log(mx) = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m > C m < ∨ m = D m < Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 19 [1226d] Tìm tham số thực m để phương trình 7n2 − 2n3 + Câu 21 Tính lim 3n + 2n2 + B A - 3 C 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 Câu 23 Tính lim n+3 A B C D ! D +∞ D Câu 24 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 25 Tính lim A B n−1 n2 + B C C D D Trang 2/5 Mã đề ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D cos n + sin n Câu 27 Tính lim n2 + A B +∞ C −∞ D + + ··· + n Câu 28 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = Câu 29 Dãy số sau có giới hạn khác 0? sin n A √ B n n C n D n+1 n Câu 30 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = ! un = −∞ B Nếu lim un = a < lim = > với n lim C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = +∞ D Nếu lim un = a > lim = lim 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 abc b2 + c2 a b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 19 19 17 Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Trang 3/5 Mã đề Câu 37 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 2a 8a a B C D A 9 9 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C D √ A √ 2 2 2 a +b a +b a +b a + b2 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a C D B Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C a D 2a Câu 41 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = x + C, C số A xα dx = α+1 Z Z C 0dx = C, C số D dx = ln |x| + C, C số x Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 43 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 44 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 46 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Trang 4/5 Mã đề Câu 47 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 48 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Cả hai sai D Chỉ có (I) Câu 50 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A A D D A D A B 10 B D 11 A C 12 C 13 14 A 15 A 16 17 C 18 A 19 C 20 A 21 A 22 23 C 24 25 C 26 27 D 28 A 29 D 30 31 D 32 33 B 34 35 B 36 A 37 D 39 C B C B D C B 38 A 40 C B 41 A 42 C 43 A 44 C 45 D 46 A 47 D 48 49 B 50 D B ... phương trình 12. 3 x + 3.15 x − x = 20 A Vô nghiệm B C √ Câu 17 [122 15d] Tìm m để phương trình x+ A ≤ m ≤ B m ≥ 1−x2 √ D − 3m + = có nghiệm 3 C ≤ m ≤ D < m ≤ 4 − 4.2 x+ 1−x2 Câu 18 [122 12d] Số nghiệm... Câu 15 [122 8d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 64 D 63 Câu 16 [122 11d]... 11 − 29 C Pmin = D Pmin = 21 Câu 13 [122 10d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = √ 11 − 19 B Pmin = log 2x Câu 14 [122 9d] Đạo hàm hàm số y = x2 − ln 2x −

Ngày đăng: 10/03/2023, 20:02

w