1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (143)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,13 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào sau đây có giới hạn là 0? A ( − 5 3 )n B ([.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy !n số sau có giới !n hạn 0? 5 A − B 3 !n C !n D e Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x)g(x)] = ab x→+∞ g(x) x→+∞ b C lim [ f (x) − g(x)] = a − b D lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ Câu Tính giới hạn lim x→2 A x2 − 5x + x−2 B C D −1 C +∞ D Câu Giá trị lim (3x2 − 2x + 1) x→1 A B Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) 4x + bằng? Câu [1] Tính lim x→−∞ x + A −4 B 2 x −9 Câu Tính lim x→3 x − A B +∞ = n D lim un = c (un = c số) B lim C D −1 C D −3 Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim f (x) = f (a) x→a C lim+ f (x) = lim− f (x) = a D lim+ f (x) = lim− f (x) = +∞ x→a x→a x−3 bằng? x→3 x + A B 2n + Câu 10 Tìm giới hạn lim n+1 A B x→a x→a Câu [1] Tính lim C +∞ D −∞ C D log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x C y0 = A y0 = B y0 = D y0 = 3 x ln 10 x 2x ln 10 2x ln 10 Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 Câu 13 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m < C m ≥ D m > 4 4 Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập đây? √ ab Trang 1/5 Mã đề " ! A 2; " B [3; 4) C (1; 2) ! D ;3 √ Câu 15 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 63 C 62 D 64 Câu 16 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m ≥ C m < D m > Câu 17 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm log(mx) = có nghiệm thực Câu 18 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < B m < ∨ m > C m < ∨ m = D m ≤ Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 20 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = e − C xy0 = −ey + D xy0 = ey + 7n2 − 2n3 + 3n3 + 2n2 + A B - ! 1 Câu 22 Tính lim + + ··· + 1.2 2.3 n(n + 1) Câu 21 Tính lim A B cos n + sin n n2 + B −∞ n−1 Câu 24 Tính lim n +2 A B Câu 23 Tính lim A Câu 25 Dãy số sau có giới hạn khác 0? sin n n+1 A B n n Câu 26 Tính lim n+3 A B 2n − Câu 27 Tính lim 3n + n4 A B C D C D C +∞ D C D C n D √ n C D D C Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = B Nếu lim un = a , lim = ±∞ lim Trang 2/5 Mã đề ! un C Nếu lim un = a > lim = lim = +∞ ! un = −∞ D Nếu lim un = a < lim = > với n lim Câu 29 Phát biểu sau sai? A lim un = c (Với un = c số) C lim = với k > nk B lim √ = n D lim qn = với |q| > Câu 30 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ c a2 + b2 b a2 + c2 a b2 + c2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 17 19 19 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A D B C a d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B C 2a D 3a d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Trang 3/5 Mã đề Câu 38 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C B a D 2a A Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C 2a D a Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C D a A 2 Câu 41 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B dx = x + C, C số α+1 Z Z C 0dx = C, C số D dx = ln |x| + C, C số x Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (I) D Chỉ có (II) Câu 43 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx B Z Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai Câu 45 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K C Khơng có câu D Câu (III) sai sai B f (x) xác định K D f (x) liên tục K Câu 46 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C B u(x) Trang 4/5 Mã đề C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 47 Z Các khẳng định sau Z sai? A Z C Z !0 f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = f (x) Z Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 48 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z D f (x)dx = f (x) Câu 49 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C D C B B 10 B 11 A 12 A 13 A 14 15 16 C 19 D 20 B B B 29 D 30 31 D 32 B 35 A D B D 34 B 36 B C 40 41 A D 42 A B 44 D 45 46 47 A 49 C 38 C 39 C 26 28 43 B B D 37 C 24 27 33 B 22 23 A 25 D 18 17 A 21 C A D C B 48 A 50 C B ... thực x≥1 A m ≤ B m ≥ C m < D m > Câu 17 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vơ nghiệm log(mx) = có nghiệm thực Câu 18 [122 6d] Tìm tham số thực m để phương trình... Câu 15 [122 8d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 63 C 62 D 64 Câu 16 [122 5d] Tìm... < ∨ m > C m < ∨ m = D m ≤ Câu 19 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 20 [3 -122 17d] Cho hàm số y = ln Trong khẳng

Ngày đăng: 10/03/2023, 19:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w