Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a x→a C f (x) có giới hạn hữu hạn x → a D lim f (x) = f (a) x→a Câu Phát biểu sau sai? A lim un = c (un = c số) C lim k = n Câu Dãy số có giới hạn 0? n3 − 3n A un = B un = n2 − 4n n+1 B lim qn = (|q| > 1) D lim = n !n −2 C un = x3 − Câu Tính lim x→1 x − A −∞ B C 4x + Câu [1] Tính lim bằng? x→−∞ x + A −1 B C −4 x+1 Câu Tính lim x→+∞ 4x + 1 A B C Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm !n D un = D +∞ D D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin 2x C − sin 2x D −1 + sin x cos x 2n − Câu Tính lim 2n + 3n + A B −∞ C +∞ D x+2 Câu 10 Tính lim bằng? x→2 x A B C D √ Câu 11 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C 62 D Vô số Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ Câu 13 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Trang 1/5 Mã đề Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 6) D (2; 4; 4) log 2x Câu 16 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x A y0 = B y0 = C y0 = D y = x ln 10 2x ln 10 x3 2x3 ln 10 Câu 17 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D − xy Câu 18 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 19 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 √ Câu 20 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 ;3 B 2; C (1; 2) D [3; 4) A 2 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 A +∞ B C D 3 Câu 22 Tính lim n+3 A B C D 1 + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ 7n2 − 2n3 + Câu 24 Tính lim 3n + 2n2 + A B - 3 D ! 3n + 2 Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D un Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B C −∞ D +∞ Câu 27 Phát biểu sau sai? A lim √ = n C B lim = với k > nk Trang 2/5 Mã đề C lim qn = với |q| > cos n + sin n Câu 28 Tính lim n2 + A +∞ B D lim un = c (Với un = c số) C D −∞ Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a > lim = lim = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = ! un D Nếu lim un = a < lim = > với n lim = −∞ Câu 30 Dãy số sau có giới hạn 0? n2 − − 2n B u = A un = n 5n + n2 5n − 3n2 C un = n2 − 3n n2 D un = n2 + n + (n + 1)2 Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B C a D A a Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a a 5a 2a B C D A 9 9 Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B a C D 2 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 19 19 17 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Câu 38 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C D a Trang 3/5 Mã đề Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 a b2 + c2 b a2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C D 4a Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D Cả ba câu sai Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C (II) (III) D Cả ba mệnh đề Câu 44 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 46 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) Trang 4/5 Mã đề (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) Câu 47 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K C Chỉ có (I) D Cả hai câu B f (x) có giá trị lớn K D f (x) liên tục K Câu 48 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 49 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số Câu 50 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B xα+1 + C, C số x dx = α+1 α Z D f (x)dx = F(x) + C 0dx = C, C số dx = ln |x| + C, C số x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C B B B A A A 10 C 11 12 13 A B D B 14 A 15 16 A C 18 17 A D 19 C 20 A 21 C 22 B 24 B 23 A 25 C 26 B 27 C 28 B 29 B 30 A 31 B 32 D 33 B 34 D 35 A 36 37 A 38 39 C 40 41 A 43 45 47 B D C 42 A B 44 A 46 C D D 48 A 49 A 50 C ... 4; 6) D (2; 4; 4) log 2x Câu 16 [122 9d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x A y0 = B y0 = C y0 = D y = x ln 10 2x ln 10 x3 2x3 ln 10 Câu 17 [122 13d] Có giá trị nguyên m để phương... C Pmin = D Pmin = 21 9 Câu 19 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 √ Câu 20 [122 20d-2mh202047] Xét số thực dương... thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 ;3 B 2; C (1; 2) D [3; 4) A 2 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 A +∞ B C D 3 Câu 22 Tính