1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (165)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,33 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→2 x + 2 x bằng? A 3 B 1 C 0 D 2 Câu 2 Phát[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim x→2 A x+2 bằng? x B C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm 2x + Câu Tính giới hạn lim x→+∞ x + 1 B A Câu Giá trị lim (3x2 − 2x + 1) x→1 A C D −1 B +∞ C D B C −∞ D +∞ Câu Tính lim x→1 A x −1 x−1 Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − A B x−3 bằng? x→3 x + A +∞ B −∞ 2n + Câu Tính giới hạn lim 3n + A B 2 Câu 10 Giá trị giới hạn lim (x2 − x + 7) bằng? x→a x→b x→a x→b D lim+ f (x) = f (a) lim+ f (x) = f (b) C D − Câu [1] Tính lim C D C D C D x→−1 A B Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A 3|x−1| = 3m − có nghiệm B C D log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m ≤ C m < D m < ∨ m = Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 2020 C 2020 D log2 13 Trang 1/5 Mã đề Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số log 2x Câu 15 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x − ln 2x 0 A y0 = B y = C y = D y = x3 2x3 ln 10 x3 ln 10 2x3 ln 10 Câu 16 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m > D m ≤ 4 4 − xy Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 11 − 11 − 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 x x x Câu 19 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A Vô nghiệm B C D √ Câu 20 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 7n2 − 2n3 + Câu 21 Tính lim 3n + 2n2 + A - B 3 1−x2 √ − 3m + = có nghiệm 3 C < m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 C B −∞ C un D B C D Câu 22 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ Câu 23 Tính lim A n+3 D n−1 Câu 24 Tính lim n +2 A B C D ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 Câu 26 Dãy số sau có giới hạn 0? − 2n n2 − n2 − 3n n2 + n + A un = B u = C u = D u = n n n 5n + n2 5n − 3n2 n2 (n + 1)2 + + ··· + n Câu 27 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = Trang 2/5 Mã đề 1 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A ! B C D D Câu 29 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = v! n un B Nếu lim un = a > lim = lim = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ 12 + 22 + · · · + n2 n3 B +∞ Câu 30 [3-1133d] Tính lim A C Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B a C D 2 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 c a2 + b2 b a2 + c2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 17 19 19 √ Câu 35 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 38 a 38 3a 58 A B C D 29 29 29 29 d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Câu 37 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 5a 8a A B C D 9 9 Trang 3/5 Mã đề Câu 38 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ √ (A C D) √ a a 2a B C D a A Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B a C D Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C a D A Câu 41 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu Z g(x)dx f (x) , g(x), ∀x ∈ R f (x)dx = Z f (x)dx = Z g0 (x)dx f (x) = g(x), ∀x ∈ R g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx C Nếu Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D F(x) = G(x) khoảng (a; b) Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu sai D Cả hai câu Câu 44 Z Trong khẳng định sau, khẳng định sai? Z A dx = ln |x| + C, C số B 0dx = C, C số Z x Z xα+1 C dx = x + C, C số D xα dx = + C, C số α+1 Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai D Chỉ có (I) Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? Trang 4/5 Mã đề (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C Cả ba mệnh đề Câu 48 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) f (t)dt = F(t) + C B Z Z D D (II) (III) Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z k f (x)dx = k f (x)dx, k số Câu 49 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 50 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D D C A D D 10 11 D 12 13 D 14 A C B C B D 16 D 18 D 20 D 21 A 22 D 23 A 24 C 15 17 B 19 D 25 C 27 C 26 A D 28 C 29 B 30 D 31 B 32 D 33 A 34 35 D 36 A 37 D 38 39 D 40 41 D D D 44 45 A 46 A 47 A 48 49 B 42 A C 43 B B 50 B C ... Pmin = 9 21 Câu 18 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 x x x Câu 19 [122 11d] Số nghiệm phương trình 12. 3 + 3.15 − = 20... ln 10 x3 ln 10 2x3 ln 10 Câu 16 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m > D m ≤ 4 4 − xy Câu 17 [122 10d] Xét số thực dương x, y thỏa...Câu 14 [122 19d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số log 2x Câu 15 [122 9d] Đạo hàm hàm số y = x2 − log

Ngày đăng: 10/03/2023, 19:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w