LC Thi Kim Anh M0 ph6ng Monte Garlo bing phdn mdm R gitng d4y Xac sudt ttrdng k0 d bfc d4i hgc LO Thi Kim Anh Emailr anhltk@buh.edu.vn aai vidt dA xudt s0 dung phAn mdm R dd th4c hien ma phdng theo phudng phep Monte Carlo cec khei niem, dinh li quan treng mAn hec ToM TAT: Ttudng oai hoc Ngan hang 56 Hoeng oieu 2, phudng Linh Chidu, Thenh ph6 Thi Olc, Thanh phd H6 Chi lvintr ViCt Nam Xec sudt Thdng kO d bQc dai hqc Qua kinh nghiem giAng day vd hidu bidt c1a 6c gie, cec gieo trinh xdc sudt Th6ng ke dud9 s(J dvng da s6 cdc trudng dai hqc Viet Nam chua chi treng cec phudng phdp mO ph6ng trinh bey cdc khdi niQm c&a m\n hec Di6u nAy ddn ddn viec hQc ve hidu cla sinh vien cdn nhieu hqn chd, ddc biet h cec khei niem kh6 nhu khei niem khoeng n cay, dinh li gidi han trung tem hay cang thtb xec sudt Bayes Ding phudng phdp m0 phdng Monte Carlo gieng day Xec su& Th6ng k€ c6 thd gihp sinh vien hi6u kidn thuc cia m1n hec vtta trUJ quan vita dAng bAn chdt TU KH0A: PhUdng ph6p Monte Carl0, Xec sudt Th6ng 16 .! Nhan bai 1713/2022 + D0l: htlps://doi.or0/1 Nhan bdi da chinh 0.1 O{t vdn tt6 T?i Vigt Nam, da s6 cric truong alai hoc n6i chung giring d4y Xric sudt Th6ng kC cho sin} vi€n kh6i ngdnh Kinh 16 ki thuet theo ki€u thi6n vd thr,rc hdnh gidi roan voi di6m chung ld dua vio ciic gi6o trinh xudt brin nudc hoic tiii li6u luu hinh ndi b6 V6i su hiiiu bi6t cta chring t6i vh qua khdo srit m6t s6 cliu s6ch Xric suir Th6ng k6 c6 mat trdn thi truong thi d Vi6t Nam phuong phiip Monte Carlo chua dugc di crip ctng nhu gqi 1i st dung nhim h5 trg cho viQc d4y hgc cric khrii niQm kh6 tiilp cdn vd hay hiiiu sai thi5ng ke Oidu ndy khi6n cho sinh vi6n kh6ng hqc chuy6n nginh Torin o bic ilai hqc hi6u kh6ng cttng bin ch6t criLc khrii ni6m, dinn li tluoc ph6t bi6u chuong trinh hoc d phip m6 phong Monte Carlo cfing tluoc nghidn cuu np dqrng vAo gid,ng day Xric suit Thting kd cing nhu ciic srich viilt vd Xric su6t Thdng k€ tll, t2l MOt s5 nghi6n criu cdn di xa hon bing vi$c vi6t c6c Shiny App (trong R) ho6c giao dg 6n cho sinh vi6n vi6t criLc ShinyApp m6 ph6ng cho c6c nQi dung hgc chuong trinh m6n hqc [3], [4] Trong bii viiit ndy, tric gii lua chgn khoing tin ciy cta uoc luqng, dinh li gi6i han mrng tim dd thuc hiQn m6 phong Monte Carlo nhim cung c6p c6i nhin cu th6 hon cing nhu lim tii lifu tham khdo cho c6c gidng vi€n mu6n cric nudc phrit tri6n, phuong 6p dyng NQi dung nghi6n crfu 2.1 tl6 ph6ng ilonte Carlo vi ngon ngf R Phuong ph6p Monte Carlo ld phuong ph6p m6 phdng nho vdo mdy tinh voi cec dir liQu tao bing c6c ham t4o stl ngiu nhi6n c6 sin Su dung phuong phrip Monte i,i TAP CHi KHOA HOC GIAO DUC VIET NAI\,1 s a 1U412022 , Duyil.n1ng15l9l2022 5625/261 5-89571 221 0S04 Carlo ta c6 th6 m6 ph6ng mQt s6 khai ni6m cta Xiic suit Th6ng k6 ta c6 thii thyc hiQn tlugc dir I6u vi tlt nhiiu trdn mriy tinh md kh6ng cin phii ldm ,it ntri6u thu nghiQm that sq thii gioi thuc Vi du sau ddy m6 te cech x6p xi sd p theo phuong ph6p m6 ph6ng Monte Carlo: Dring hdm tao s6 ngiu nhi6n m6t ng6n ngt lip trinh cu thC (d day chung tdi dtng R vd dirng hdm runif(n,a,b) dii xu6t ngiu nhi6n n giri tri c6 phnn phiii dAu tr6n khoing (a, b)) dti t?o n : 100