Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giả sử ta có lim x→+∞ f (x) = a và lim x→+∞ f (x) = b[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) + g(x)] = a + b B lim [ f (x)g(x)] = ab x→+∞ x→+∞ f (x) a C lim = D lim [ f (x) − g(x)] = a − b x→+∞ g(x) x→+∞ b − 2n Câu [1] Tính lim bằng? 3n + 2 B C D − A 3 Câu Dãy số có giới hạn 0? !n !n n3 − 3n −2 A un = n − 4n B un = C un = D un = n+1 2n + Câu Tính giới hạn lim 3n + 2 C D A B 2x + Câu Tính giới hạn lim x→+∞ x + 1 D A −1 B C x+2 Câu Tính lim bằng? x→2 x A B C D 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −4 C D −1 Câu !Dãy số sau có giới !hạn 0? n n A B − e !n C !n D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a C f (x) có giới hạn hữu hạn x → a D lim+ f (x) = lim− f (x) = a x→a x→a x − 12x + 35 25 − 5x B Câu 10 Tính lim x→5 C +∞ D − √ Câu 11 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ A −∞ Trang 1/5 Mã đề Câu 14 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D log 2x x2 − ln 2x B y0 = C y0 = x ln 10 2x ln 10 Câu 15 [1229d] Đạo hàm hàm số y = A y0 = Câu 16 − log 2x x3 D y0 = [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 1] − ln 2x 2x3 ln 10 q x+ log23 x + 1+4m−1 = D m ∈ [0; 2] Câu 17 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 √ Câu 18 [12215d] Tìm m để phương trình x+ A < m ≤ B ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ D ≤ m ≤ Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m ≥ D m > Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 21 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B D - C 1 + + ··· + n Mệnh đề sau đúng? n2 + A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 22 [3-1132d] Cho dãy số (un ) với un = Câu 23 Dãy số sau có giới hạn 0? n2 − 3n − 2n A un = B un = n 5n + n2 Câu 24 Tính lim A n+3 B C un = C n2 + n + (n + 1)2 D un = D un Câu 25 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C +∞ D cos n + sin n Câu 26 Tính lim n2 + A −∞ B C D n−1 Câu 27 Tính lim n +2 A B C D n2 − 5n − 3n2 +∞ Trang 2/5 Mã đề ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) B C A Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un D ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = = a , lim = ±∞ lim !vn un = a > lim = lim = +∞ Câu 30 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) = với k > nk D lim √ = n B lim √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 3a 38 a 38 A B C D 29 29 29 29 0 0 Câu 32.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 3a Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a B C D A 3 Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a A B C 2a D a 2 Câu 37 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C D a 3 2 Trang 3/5 Mã đề d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 2a C D 3a Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 13 26 Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Khơng có câu C Câu (III) sai sai Câu 42 Mệnh đề sau sai? D Câu (II) sai Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z D f (x)dx = f (x) Câu 43 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) xác định K Câu 44 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu sai D Cả hai câu Câu 45 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Trang 4/5 Mã đề Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (II) (III) D (I) (III) Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R A Nếu Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B dx = ln |x| + C, C số x Z D 0dx = C, C số xα dx = xα+1 + C, C số α+1 Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D D D C D A A 10 B 11 A 12 B 13 B 14 15 B 16 A D 18 17 A 19 C 21 23 C 20 D B 22 D B D 24 C 25 D 26 C 27 D 28 C 29 D 30 A 31 B 33 32 C 35 34 D 41 C 36 A 37 A 39 B D B 38 C 40 C 42 C 43 A 44 D 45 A 46 D 47 A 48 D 49 D 50 C ... nghiệm C m ≥ D ≤ m ≤ Câu 19 [122 5d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m ≥ D m > Câu 20 [122 12d] Số nghiệm phương trình x−3... x + 1+4m−1 = D m ∈ [0; 2] Câu 17 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 √ Câu 18 [122 15d] Tìm m để phương trình x+ A...Câu 14 [122 13d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D log 2x x2 − ln 2x B y0 = C y0 = x ln 10 2x ln 10 Câu 15 [122 9d] Đạo hàm hàm số y =