1. Trang chủ
  2. » Tất cả

Ôn tập môn toán lớp 12 (42)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,42 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A − 1 4 B[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi √ x2 + 3x + x→−∞ 4x − 1 A − B 4 √ √ 4n2 + − n + Câu Tính lim 2n − A B +∞ Câu Tính giới hạn lim C D C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B f (x) có giới hạn hữu hạn x → a x→a x→a C lim f (x) = f (a) D lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a Câu Giá trị lim(2x2 − 3x + 1) x→1 A B Câu Dãy số có giới hạn 0? ! n n3 − 3n −2 A un = B un = n+1 Câu Tính lim A −∞ 2n − + 3n + B 2n2 C D +∞ !n C un = D un = n2 − 4n C +∞ D Câu Phát biểu sau sai? = nk D lim = n A lim un = c (un = c số) B lim C lim qn = (|q| > 1) Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ f (x) a A lim = x→+∞ g(x) b C lim [ f (x) − g(x)] = a − b x→+∞ 4x + bằng? x→−∞ x + B −4 x→+∞ B lim [ f (x) + g(x)] = a + b x→+∞ D lim [ f (x)g(x)] = ab x→+∞ Câu 10 [1] Tính lim A −1 C Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D D Câu 12 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Trang 1/5 Mã đề Câu 13 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m > C m ≥ D m < Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m < D m ≤ A m > 4 4 log(mx) Câu 15 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 C ;3 D (1; 2) A [3; 4) B 2; 2 √ ab Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = −ey + C xy0 = ey − D xy0 = −ey − q Câu 18 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 2] Câu 17 [3-12217d] Cho hàm số y = ln Câu 19 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 − xy Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 + 19 18 11 − 29 11 − A Pmin = B Pmin = C Pmin = D Pmin = 9 21 ! 1 + ··· + Câu 21 [3-1131d] Tính lim + 1+2 + + ··· + n B C D +∞ A 2 12 + 22 + · · · + n2 Câu 22 [3-1133d] Tính lim n3 C +∞ D A B 3 cos n + sin n Câu 23 Tính lim n2 + A +∞ B C −∞ D Câu 24 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B n−1 Câu 25 Tính lim n +2 A B C C D D Trang 2/5 Mã đề 1 1 Câu 26 Tính lim + + ··· + 1.2 2.3 n(n + 1) ! ! 3n + 2 Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 7n − 2n + Câu 28 Tính lim 3n + 2n2 + A B C - D 3 un Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D A B C D Câu 30 Dãy số sau có giới hạn 0? n2 − n2 + n + 1 − 2n n2 − 3n B u = C u = D u = A un = n n n n2 5n − 3n2 (n + 1)2 5n + n2 Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A C B a D Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab 1 B √ C D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a C D B A a 2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 19 19 17 3a Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 √ Câu 37 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 a 38 3a 3a 38 A B C D 29 29 29 29 Trang 3/5 Mã đề Câu 38 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a D a A a B 2a C [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ BC) √ √ Khoảng cách từ A đến (S √ a 57 2a 57 a 57 C D A a 57 B 19 17 19 Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B a C D Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K B f (x) liên tục K C f (x) xác định K D f (x) có giá trị lớn K Câu 42 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D F(x) = G(x) khoảng (a; b) Câu 44 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) D dx = log |u(x)| + C u(x) Câu 45 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Trang 4/5 Mã đề Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Cả hai sai C Chỉ có (I) D Chỉ có (II) Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai C Câu (III) sai D Câu (I) sai sai Câu 49 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C Cả ba mệnh đề D (I) (II) Câu 50 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C A C D B C A 10 C 11 A 12 13 14 C 15 A 18 C B C 21 22 D 24 25 D 26 27 A 28 29 A 30 31 A 32 D B D D 33 C 20 23 35 D 16 17 19 B C B C D B 34 A B C 36 D 38 37 A 39 D 40 B 42 D 43 A 44 D 45 A 46 41 B 47 D 48 A 49 D 50 A B ... [0; 2] Câu 17 [3 -122 17d] Cho hàm số y = ln Câu 19 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C log2 2020 D 2020 − xy Câu 20 [122 10d] Xét số... m < D m ≤ A m > 4 4 log(mx) Câu 15 [122 6d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 16 [122 20d-2mh202047] Xét số thực dương a,... x!+ 2y thuộc tập " đây? ! 5 C ;3 D (1; 2) A [3; 4) B 2; 2 √ ab Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = −ey + C xy0 = ey − D xy0 = −ey − q Câu 18 [122 16d] Tìm tất

Ngày đăng: 10/03/2023, 10:38

w