Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào có giới hạn bằng 0? A un = n2 − 4n B un = n[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 x+1 Câu Tính lim x→+∞ 4x + A B !n −2 C un = C !n D un = D Câu Phát biểu sau sai? A lim qn = (|q| > 1) = n D lim k = n B lim C lim un = c (un = c số) 2x + x+1 A −1 B − 2n Câu [1] Tính lim bằng? 3n + 1 A B − 3 Câu Tính giới hạn lim x→+∞ C D 2 D C Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C − x+1 Câu Tính lim x→−∞ 6x − 1 A B C 2n + Câu Tìm giới hạn lim n+1 A B C D D D Câu 10 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (2; 4; 3) D (1; 3; 2) Trang 1/5 Mã đề √ Câu 12 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số Câu 13 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D q Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 2] D m ∈ [0; 1] Câu 15 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m ≤ D m < 4 4 log(mx) Câu 16 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m < ∨ m = D m ≤ √ Câu 17 [12215d] Tìm m để phương trình x+ 1−x A ≤ m ≤ B ≤ m ≤ 4 Câu 18 [1225d] Tìm tham số thực m để phương x≥1 A m ≥ B m ≤ √ − 4.2 x+ 1−x2 − 3m + = có nghiệm D < m ≤ x x trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực C m ≥ C m > D m < Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 2x ln 10 x ln 10 x3 n−1 Câu 21 Tính lim n +2 A B C D Câu 22 Dãy số sau có giới hạn 0? n2 + n + n2 − A un = B u = n (n + 1)2 5n − 3n2 C un = n2 − 3n n2 D un = − 2n 5n + n2 Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 24 Tính lim A Câu 25 Tính lim A −∞ B 7n2 − 2n3 + 3n3 + 2n2 + B cos n + sin n n2 + B C D C - D C D +∞ Trang 2/5 Mã đề Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim un D B −∞ C +∞ ! 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C D 2 Câu 28 Phát biểu sau sai? A lim qn = với |q| > B lim un = c (Với un = c số) 1 D lim √ = C lim k = với k > n n A Câu 29 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = +∞ D Nếu lim un = a > lim = lim + + ··· + n Câu 30 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ √ BC) √ a 57 2a 57 a 57 A B a 57 D C 19 17 19 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B D C √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) Trang 3/5 Mã đề √ 3a 58 A 29 3a B 29 √ 3a 38 C 29 √ a 38 D 29 d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD c a2 + b2 abc b2 + c2 b a2 + c2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 4a C 2a D 3a Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 43 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 44 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 45 Xét hai câu sau Trang 4/5 Mã đề Z (I) ( f (x) + g(x))dx = Z f (x)dx + Z g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Cả hai câu C Chỉ có (II) D Chỉ có (I) Câu 46 đề sau Z [1233d-2] Mệnh Z Z sai? A Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R C Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B G(x) = F(x) − C khoảng (a; b), với C số C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 48 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A Z x Z xα+1 C xα dx = + C, C số D 0dx = C, C số α+1 Câu 50 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Câu (II) sai D Khơng có câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C A B C D D D D 10 11 A 12 A 13 A 14 C 15 17 D 20 21 D 22 23 C 24 25 C 26 A 27 C 28 A 29 D 30 31 D 32 33 D 34 C D C B D C 36 A B C 38 A 39 A 41 C 18 A B 37 B 16 19 35 C 40 C 42 B 43 A D 44 B B 45 B 46 47 B 48 D 50 D 49 C ... A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a;... Câu (II) sai D Khơng có câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C A B C D D D D 10 11 A 12 A 13 A 14 C 15 17 D 20 21 D 22 23